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a b s t r a c t

Computation of rotation tensor is essential in the analysis of deformable bodies.
This paper proposes an explicit expression for rotation tensor R of deformation
gradient F , and successfully establishes an intrinsic relation between the exponen-
tial mapping Q = exp A and the deformation F . As an application, Truesdell’s
simple shear deformation is revisited. For easy use of our formulation, we provide
a Maple code for a general 2D problem.
© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In continuum physics, the representations and computations of SO(3) rotation tensor are vital in all
aspects of theoretical study and practical applications. For deformable bodies, the deformation gradient is
defined by F = χ⊗∇, where ∇ is the del operator with respect to X and χ(X, t) is a mapping from a point
X in the reference configuration to a point x in the current configuration through time t, namely χ : X → x.
The deformation gradient F can be split into stretch and rotation components by the polar multiplication
decomposition [1,2]: F = R · U = V · R, where “·” denotes the dot product and U , V , and R are the
right stretch, left stretch, and rotation tensors, respectively. The rotation tensor satisfies the orthogonality
condition R ·RT = RT ·R = I and det(R) = 1. From the polar decomposition and orthogonality condition,
the right and left Cauchy–Green stretch tensors can be defined as C = F T · F = U · U = U2 and
B = F · F T = V · V = V 2, respectively. The algorithm for computing the rotation tensor is

R = F · U−1 = F · (C)− 1
2 = V −1 · F = (B)− 1

2 · F . (1)

As [3] pointed out, such a direct analysis requires to perform square root and inverse operations on
symmetric tensors, and this may bring computational difficulties for both (C)1/2 and (C)−1/2. Although
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there were some attempts to find an explicit representation of the rotation tensor [3–7], however, all proposed
algorithms are rather complicated for application. It is highly demanded to have a simple and practical
representation of rotation tensor R that is explicitly expressed in the deformation gradient tensor F .

Another issue is that, in mathematics, an arbitrary SO(3) rotation tensor Q is given by

Q = I + sin ω

ω
A + 1 − cos ω

ω2 A2. (2)

where A is an arbitrary order-2 skew-symmetric tensor, namely AT = −A, which has an axial vector ω = ε :
A = −2(A32G1 +A13G2 +A21G3) = ω1G1 +ω2G2 +ω3G3. Hence, ω1 = −2A32, ω2 = −2A13, ω3 = −2A21,
and ω =

√
ω · ω. Because ε : ε = 2I, we have that ε · ω = ε · (ε : A) = ε · ε · A = 2I · A = 2A; therefore,

A = 1
2 ε · ω.

Note that the rotation tensor expression in Eq. (2) is not derived from the deformation gradient F = R·U ,
and so the rotation tensor Q is not equal to the rotation tensor R, namely Q ̸= R, which means that Q is
nothing to do with R.

Although the rotation tensor in Eq. (2) is widely used in the formulation of continuum physics, no
expression has yet been obtained for A in terms of the right Cauchy–Green tensor C and deformation
gradient F . The relationship between A and tensors such as the deformation gradient tensor F and the
right Cauchy–Green tensor C remains one of the fundamental unsolved problems in continuum physics.

In this Letter, we will focus on the above-mentioned open problems, and propose alternative way to find
explicit formulas for the rotation tensor R, and find an intrinsic relation between the exponential mapping
Q = exp A and the deformation gradient tensor F .

2. Rotation tensor expressed in the deformation gradient

Given a deformation gradient F , we can easily get the right Cauchy–Green stretch tensor C = F T · F

and its eigenvalues λk from the eigenvalue characteristics det(C − λI) = 0.
To find the explicit expression of rotation tensor R, it is clear that we must find the explicit expression

of (C) 1
2 and its inverse (C)−1/2 which are expressed in the deformation gradient F .

According to the Cayley–Hamilton theorem [1,2,8–10], the explicit expression of (C)1/2 can be set in the
following form:

C1/2 = α0I + α1C + α2C2, (3)

in which the coefficients α0, α1, and α2 can be determined by simply replacing the C with the eigenvalues
λ1, λ2 and λ3 in Eq. (3), in this way, we can get three equations as follows:⎛⎝ √

λ1√
λ2√
λ3

⎞⎠ =

⎛⎝ 1 λ1 (λ1)2

1 λ2 (λ2)2

1 λ3 (λ3)2

⎞⎠ ⎛⎝ α0
α1
α2

⎞⎠ , (4)

hence, we can find the coefficients α0, α1 and α2 as follows⎛⎝ α0
α1
α2

⎞⎠ =

⎛⎝ 1 λ1 (λ1)2

1 λ2 (λ2)2

1 λ3 (λ3)2

⎞⎠−1 ⎛⎝ √
λ1√
λ2√
λ3

⎞⎠ . (5)

The coefficients α1, α2, and α3 are given in the Appendix.
If two of the eigenvalues are repeated λi = λj , i ̸= j, then Eq. (4) will yield two identical equations, and

therefore will not be a set of 3 independent equations. If λ1 = λ2 = λ, we can reformulate the first equation
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in Eq. (4) as follows: d
dλ [λ1/2 −(α0 +α1λ+α2λ2)]|λ=λ = 0, namely 1

2 λ−1/2 −(α1 +2α2λ) = 0. Hence, Eq. (4)
becomes ⎛⎝ 1

2
1√
λ√

λ√
λ3

⎞⎠ =

⎛⎝ 0 1 2λ
1 λ (λ)2

1 λ3 (λ3)2

⎞⎠ ⎛⎝ α0
α1
α2

⎞⎠ , (6)

Therefore, we can get the coefficients α0, α1 and α2 as follows⎛⎝ α0
α1
α2

⎞⎠ =

⎛⎝ 0 1 2λ
1 λ (λ)2

1 λ3 (λ3)2

⎞⎠−1 ⎛⎝ 1
2

√
λ√
λ√
λ3

⎞⎠ . (7)

In the same way, we can formulate C− 1
2 as

(C)−1/2 = β0I + β1C + β2C2, (8)

in which β0, β1, and β2 are again determined by the eigenvalues λk, (k = 1, 2, 3) of C;⎛⎝ β0
β1
β2

⎞⎠ =

⎛⎝ 1 λ1 (λ1)2

1 λ2 (λ2)2

1 λ3 (λ3)2

⎞⎠−1
⎛⎜⎜⎝

1√
λ1
1√
λ2
1√
λ3

⎞⎟⎟⎠ . (9)

their expressions can also be found in the Appendix. If λ1 = λ2 = λ, from Eq. (8), we have d
dλ [λ−1/2 −

(β0 + β1λ + β2λ2)]|λ=λ = 0, namely − 1
2 λ−3/2 − (β1 + 2β2λ) = 0. Hence, Eq. (9) becomes⎛⎝ β0

β1
β2

⎞⎠ =

⎛⎝ 0 1 2λ
1 λ (λ)2

1 λ3 (λ3)2

⎞⎠−1
⎛⎜⎝ − 1

2 λ−3/2
1√
λ

1√
λ3

⎞⎟⎠ . (10)

If all eigenvalues are identical, namely λ1 = λ2 = λ3, in this case, the deformation has no rotation but
pure stretching.

Using C = F T · F , we obtain explicit expressions for U and U−1:

U = α0I + α1(F T · F ) + α2(F T · F )2, (11)

and
U−1 = β0I + β1(F T · F ) + β2(F T · F )2. (12)

With these formulas, we can write the rotation tensor R as follows:

R = F · U−1 = F · (β0I + β1C + β2C2)
= F · [β0I + β1(F T · F ) + β2(F T · F )2].

(13)

The explicit expressions in Eqs. (11)–(13) have not previously been seen in the literature.
From Eq. (13), and notice the definition U2 = C = F T · F and V 2 = B = F · F T , hence the rotation

tensor in Eq. (13) can be rewritten as follows

R = F · U−1 = β0F · I + β1F · F T · F + β2F · (F T · F ) · (F T · F )
= β0F + β1B · F + β2B2 · F

= (β0I + β1B + β2B2) · F .

(14)

Since R = V −1 · F , comparing with the above relation, hence we have

V −1 = β0I + β1B + β2B2

= β0I + β1F · F T + β2(F · F T )2.
(15)
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3. 2D deformation

For the 2D deformation, the eigenvalues of C are

λ1,2 = C11 + C22

2 ± 1
2

√
(C11 − C22)2 + 4C12

2. (16)

We can easily write the tensors U , U−1, and R as follows:

U = (λ2
√

λ1 − λ1
√

λ2)I + (
√

λ2 −
√

λ1)C
λ2 − λ1

, (17)

and its inverse
U−1 = (λ3/2

2 − λ
3/2
1 )I + (λ1/2

1 − λ
1/2
2 )C

(λ2 − λ1)
√

λ1λ2
, (18)

and rotation tensor

R =
F ·

[
(λ3/2

2 − λ
3/2
1 )I + (λ1/2

1 − λ
1/2
2 )C

]
(λ2 − λ1)

√
λ1λ2

=
F ·

[
(λ3/2

2 − λ
3/2
1 )I + (λ1/2

1 − λ
1/2
2 )(F T · F )

]
(λ2 − λ1)

√
λ1λ2

.

(19)

This 2D deformation rotation tensor expression has not previously been seen in the literature.
For the easy use of our formulation, we have written a Maple code for a general 2D problem as follows:

with(LinearAlgebra):

R := proc (F)

local C, Eigen, lambda1, lambda2, alpha0, alpha1, beta0, beta1, U, Uinverse;

C := Multiply(Transpose(F), F);

Eigen := Eigenvalues(C);

lambda1 := Eigen(1);

lambda2 := Eigen(2);

alpha0 := simplify((lambda2*sqrt(lambda1)-lambda1*sqrt(lambda2))/(lambda2-lambda1));

alpha1 := simplify((sqrt(lambda2)-sqrt(lambda1))/(lambda2-lambda1));

beta0 := simplify((lambda2/sqrt(lambda1)-lambda1/sqrt(lambda2))/(lambda2-lambda1));

beta1 := simplify((1/sqrt(lambda2)-1/sqrt(lambda1))/(lambda2-lambda1));

U := simplify(alpha0*Matrix([[1, 0], [0, 1]])+alpha1*C);

Uinverse := simplify(beta0*Matrix([[1, 0], [0, 1]])+beta1*C);

simplify(Multiply(F, Uinverse))

end proc

The code is general and can be easily upgraded to the 3D problem.
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4. Relations between SO(3) rotation tensor and deformation gradient

Now we can try to find the skew-symmetric tensor A that is expressed in the deformation gradient tensor
F . Mathematically speaking, the rotation tensor in Eq. (2) is an exponential mapping of a second-order skew-
symmetric tensor A, that is, Q = eA. As AT = −A and trA = 0 for the skew-symmetric tensorA, we have
that det A = etrA = e0 = 1, and so QT ·Q = eAT ·eA = e−A+A = e0 = I = eA−A = eA ·eAT = Q ·QT = I.

One approach is to set Q = eA = R = F ·U−1, such that A = ln(F ·U−1). However, this is not an explicit
expression owing to the logarithm operation. Another method is to use the rotation tensor in Eq. (13) and
let Q = R, that is,

I + sin ω

ω
A + 1 − cos ω

ω2 A2 = F · (β0 + β1C + β2C2), (20)

Transposing both sides of this equation gives

I − sin ω

ω
A + 1 − cos ω

ω2 A2 = (β0 + β1C + β2C2) · F T , (21)

Eq. (20) minus Eq. (21) gives an explicit expression of the skew-symmetric tensor A. For the 3D case, we
have

A = ω

2 sin ω

[
β0(F − F T ) + β1(F · C − C · F T ) + β2(F · C2 − C2 · F T )

]
. (22)

and for the 2D deformation case, we have

A = ω

2 sin ω
[ (λ

3/2
2 − λ

3/2
1 )(F − F T )

(λ2 − λ1)
√

λ1λ2
+ (λ1/2

1 − λ
1/2
2 )(F · C − C · F T )

(λ2 − λ1)
√

λ1λ2
]. (23)

Eqs.(22) is the intrinsic linkages between the rotation tensor Q and the deformation gradient tensor F , as
well as the Cauchy–Green tensor C. These relations reveal that the skew-symmetric tensor A is not only
related to the antisymmetric tensor F −F T , but also to other two antisymmetric tensors as well: F ·C−C ·F T

and F · C2 − C2 · F T . If the deformation gradient F is symmetric, i.e., F = F T , then A = 0 and Q = I.

5. Approximation of rotation tensor

In co-moving coordinates, the deformation gradient is defined by F = gk ⊗ Gk; thus, F T = Gk ⊗ gk,
C = gijGi ⊗ Gj and C2 = gijgkℓG

jkGi ⊗ Gℓ. Substituting these formulas into Eq. (13) leads to another
form of the rotation tensor.

If we introduce the displacement vector u from the reference to the current configuration, the deformation
mapping becomes χ(X) = X + u and the deformation gradient tensor is F = I + u ⊗ ∇. Hence,
its transpose F T = I + ∇ ⊗ u, C = F T · F = I + u ⊗ ∇ + ∇ ⊗ u + (∇ ⊗ u) · (u ⊗ ∇), and
C2 = I + 2(u ⊗ ∇ + ∇ ⊗ u) + (u ⊗ ∇) · (∇ ⊗ u) + 3(∇ ⊗ u) · (u ⊗ ∇) + (u ⊗ ∇)2 + (∇ ⊗ u)2 +
(u ⊗ +∇ ⊗ u) · (∇ ⊗ u) · (u ⊗ ∇) + (∇ ⊗ u) · (u ⊗ ∇) · (u ⊗ ∇ + ∇ ⊗ u) + [(∇ ⊗ u) · (u ⊗ ∇)]2. Substituting
these expressions into Eq. (13), we have the rotation tensor R expressed in terms of the displacement vector
u, namely R = (I + u ⊗ ∇) · (β0I + β1C + β2C2).

With this displacement form of the rotation tensor, we propose two consistent approximations of the
rotation tensor based on the order of u ⊗ ∇, for instance, the first order rotation tensor

R1st ≈ (β0 + β1 + β2)I + (β0 + 2β1 + 4β2)u ⊗ ∇ + (β1 + 2β2)∇ ⊗ u + O[(u ⊗ ∇)2], (24)

and the second order rotation tensor

R2nd ≈ (β0 + β1 + β2)I + (β0 + 2β1 + 4β2)u ⊗ ∇



6 B.-H. Sun / Applied Mathematics Letters 111 (2021) 106606

+ (β1 + 2β2)∇ ⊗ u + (β1 + 10β2)(u ⊗ ∇) · (∇ ⊗ u)
+ β2[(u ⊗ ∇)2 + (∇ ⊗ u)2] + O[(u ⊗ ∇)3]. (25)

Those two approximations of the rotation tensor have not been reported in the literature. The rotation
tensor approximation here can be used to the formulations of thin-shells modeling, it is anticipated that the
order estimation of rotation of shell middle surface can be rigorously examined.

In summary, all of the explicit expressions for U , U−1, and R derived in this letter have been formulated
without using the eigenvectors of C, an essential feature that is different from traditional algorithms.

6. Generalization to order-n tensor

Although our focus is mainly on the 3D deformation, the proposed algorithm of computing the rotation
tensor and relevant tensor is universal for any order tensor and even can be used to differential operators
such as in quantum mechanics and the Lie group SE(3) . Therefore, it is worth to give general formulations.

For instance, if F is order-n tensor, we still have a polar decomposition F = R·U , and tensor C = F T ·F .
We can compute the eigenvalues λk, k = 1, . . . , n of C by the characteristic equation det(C = λI) = 0. Once
we have the eigenvalues λk, we can compute C−1/2.

Set C−1/2 =
∑n−1

j=0 cjCj , according to the Cayley–Hamilton theory, the eigenvalues satisfy the polynomial
corresponding equation, namely λ

−1/2
k =

∑n−1
j=0 cjλj

k, k = 1, . . . , n. This operation will produce n-equations
as follows ⎛⎜⎜⎜⎜⎝

1 λ1 . . λn−1
1

1 λ2 . . λn−1
2

1 . . . .
1 . . . .
1 λ1 . . λn−1

n

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

c0
c1
.
.

cn−1

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1/

√
λ1

1/
√

λ2
.
.

1/
√

λn

⎞⎟⎟⎟⎟⎠ . (26)

We can solve the equation and find the coefficient vector⎛⎜⎜⎜⎜⎝
c0
c1
.
.

cn−1

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1 λ1 . . λn−1

1
1 λ2 . . λn−1

2
1 . . . .
1 . . . .
1 λ1 . . λn−1

n

⎞⎟⎟⎟⎟⎠
−1 ⎛⎜⎜⎜⎜⎝

1/
√

λ1
1/

√
λ2

.

.
1/

√
λn

⎞⎟⎟⎟⎟⎠ . (27)

From the obtained ck, k = 0, . . . , n − 1, we have C−1/2 =
∑n−1

j=0 cjCj , and rotation tensor

R = F · C−1/2 = F ·
n−1∑
j=0

cjCj

= F · (c0I + c1C + c2C2 + · · · + cn−1Cn−1).

(28)

If there were repeated eigenvalues, the above-mentioned computing method can also be used to generate
additional independent equation.

7. Applications

To verify our new formulations, we present the following three examples.
(1) A 2D deformation:
Consider the deformation given by the mapping (see Example 3.7.1 in [11])

χ(X) = 1
4 [4X1 − (9 − 3X1 − 5X2 − X1X2)t]G1 + 1

4[4X2 + (16 + 8X1)t]G2. (29)
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Fig. 1. Simple shear deformation.

For X = (0, 0), t = 1, determine the symmetric stretch tensor U and rotation tensor R.
From the deformation mapping in Eq. (29), we have the deformation gradient F = 1

4 (G1 ⊗ G1 − 5G1 ⊗

G2 + 8G2 ⊗ G1 + 4G2 ⊗ G2) or in matrix [F ] =
( 1

4 − 5
4

2 1

)
.

Applying the Maple code to the this problem, and just input R((1/4) ∗ Matrix([[1, −5], [8, 4]])) in Maple
command line, we can get following results.

The right Cauchy–Green tensor C = 1
16 (65G1 ⊗G1 +27G1 ⊗G2 +27G2 ⊗G1 +41G2 ⊗G2), or in matrix

[C] = [F ]T [F ] = 1
16

(
65 27
27 41

)
.

From the eigenvalue equation |C − λI| = 0, we obtain two eigenvalues of C as follows: λ1 = 53
16 + 3

16
√

97
and λ2 = 53

16 − 3
16

√
97.

Hence, the coefficients are α0 = 11
194

√
194, α1 = 2

97
√

194 and β0 = 75
1067

√
194, β1 = − 8

1067
√

194.

Therefore, we have [U ] =
√

194
776

(
81 27
27 57

)
, its inverse [U ]−1 =

√
194

2134

(
85 −27

−27 109

)
, and the rotation

tensor [R] = 1√
194

(
5 −13
13 5

)
, and its transpose [R]T = 1√

194

(
5 13

−13 5

)
.

The correctness of the above results can be easily validated, since R · RT = RT · R = I and det R = 1.

(2) A 3D deformation: Given a deformation gradient matrix [F ] =

⎛⎝ 1 2 3
3 1 3
3 2 1

⎞⎠, by our 3D Maple

code, we can find the corresponding rotation [R] = 1√
59

⎛⎜⎝ −
√

59
2 + 3

2 5 3
2 +

√
59
2

5 −3 5
3
2 +

√
59
2 5 −

√
59
2 + 3

2

⎞⎟⎠. The interesting

feature of this rotation is that it is symmetric. We can show that it is a rotation, because it satisfies the
rotation definition det[R] = 1, and [R]T [R] = [R][R]T = [I],

(3) Simple shear deformation:
This shear deformation is defined to be a set of line elements whose lengths and orientations are

unchanged, as shown in 1. The deformation mapping in this case is χ(X) = (X1 +γX2)G1 +X2G2 +X3G3.
We find that the deformation gradient tensor is F = I+γG1⊗G2 = G1⊗G1+γG1⊗G2+G2⊗G2+G3⊗G3

and its transpose is F T = I + γG2 ⊗ G1 = G1 ⊗ G1 + γG2 ⊗ G1 + G2 ⊗ G2 + G3 ⊗ G3. The Cauchy–
Green tensor is written as C = F T · F = I + γG1 ⊗ G2 + γG2 ⊗ G1 + γ2G2 ⊗ G2, and its square is
C2 = (1 + γ2)G1 ⊗ G1 + (2γ + γ3)G1 ⊗ G2 + (2γ + γ3)G2 ⊗ G1 + (γ4 + 3γ2 + 1)G2 ⊗ G2 + G3 ⊗ G3. The
eigenvalues of C are λ1 = 1, λ2 = 1

2 γ2 + 1 + 1
2

√
γ4 + 4 γ2, and λ3 = 1

2 γ2 + 1 − 1
2

√
γ4 + 4 γ2.

Applying our new formulation and using our 3D Maple code, the right stretch tensor is obtained as
U−1 = s0I+s1C+s2C2 = (U−1)11G1⊗G1+(U−1)12G1⊗G2+(U−1)21G2⊗G1+(U−1)22G2⊗G2+G3⊗G3

and the rotation tensor is R = R11G1 ⊗ G1 + R12G1 ⊗ G2 + R21G2 ⊗ G1 + R22G2 ⊗ G2 + G3 ⊗ G3, where
the coefficients s0, s1, s2, and other elements are given in the Appendix.

The right stretch tensor U , its inverse C−1, and the rotation tensor R obtained here for the shear
deformation have no geometrical constraints. From Fig. 2, it is clear to see that the coefficients s0 and
s1 vary dramatically, with s0 being positive and s1 being negative; s2 is positive and smooth, and has a
maximum value of approximately 0.37498.
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Fig. 2. Coefficient comparisons: s0, s1, and s2.

Fig. 3. Rotation tensor component vs. shear deformation γ.

For small shear deformations, Truesdell’s both eigenvalues and rotation tensor [1,2] can be obtained from
our formulation after omitting orders higher than O(γ2) terms. The reduced eigenvalues of C are λ1 = 1,
λ2 = 1 + 1

2 γ, and λ2 = 1 − 1
2 γ; and rotation tensor is

RTruesdell =

⎛⎜⎜⎝
1√

1+γ2/4
2γ√

1+γ2/4
0

− 2γ√
1+γ2/4

1√
1+γ2/4

0
0 0 1

⎞⎟⎟⎠ . (30)

The components of this rotation tensor are plotted in Fig. 3. The drawing shows that both components R11
and R22 are vary slowly vs the γ, but the R12 and R21 vary with γ.

Through numerical comparisons, we found that Truesdell’s results are extreme accurate at around of
errors margin of O(10−13). Therefore, the second-order or nonlinear effects of the simple shear deformation
can be omitted.

8. Conclusions

In conclusion, our algorithm successfully produces explicit formulas for both C−1/2 and the rotation
tensor R. The key feature of the new algorithm is that there is no need to find the eigenvector of C, and even



B.-H. Sun / Applied Mathematics Letters 111 (2021) 106606 9

more remarkable is that, for the first time, we have established the intrinsic relation between the rotation
tensor (i.e., an exponential mapping) Q = exp A and the deformation gradient tensor F . Finally, as an
application, we have evaluated Truesdell’s approximate results for simple shear deformation using our exact
solution, and have confirmed that Truesdell’s results are extremely accurate.

CRediT authorship contribution statement

Bo-Hua Sun: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation,
Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing
- original draft, Writing - review & editing.

Availability of data

The Maple code has been provided, and there are no extra data in this article.

Appendix

α0 = λ2λ3
√

λ1

λ1
2 − λ1λ2 − λ1λ3 + λ2λ3

(31)

− λ1λ3
√

λ2

λ1λ2 − λ1λ3 − λ2
2 + λ2λ3

+ λ1λ2
√

λ3

λ1λ2 − λ1λ3 − λ2λ3 + λ3
2 ,

α1 = − (λ2 + λ3)
√

λ1

λ1
2 − λ1λ2 − λ1λ3 + λ2λ3

(32)

+ (λ1 + λ3)
√

λ2

λ1λ2 − λ1λ3 − λ2
2 + λ2λ3

− (λ1 + λ2)
√

λ3

λ1λ2 − λ1λ3 − λ2λ3 + λ3
2 ,

α2 =
√

λ1

λ1
2 − λ1λ2 − λ1λ3 + λ2λ3

(33)

−
√

λ2

λ1λ2 − λ1λ3 − λ2
2 + λ2λ3

+
√

λ3

λ1λ2 − λ1λ3 − λ2λ3 + λ3
2 .

β0 = λ2λ3√
λ1(λ1

2 − λ1λ2 − λ1λ3 + λ2λ3)
(34)

− λ1λ3√
λ2(λ1λ2 − λ1λ3 − λ2

2 + λ2λ3)
+ λ1λ2√

λ3(λ1λ2 − λ1λ3 − λ2λ3 + λ3
2)

,

β1 = − λ2 + λ3√
λ1(λ1

2 − λ1λ2 − λ1λ3 + λ2λ3)
(35)

+ λ1 + λ3√
λ2(λ1λ2 − λ1λ3 − λ2

2 + λ2λ3)
− λ1 + λ2√

λ3(λ1λ2 − λ1λ3 − λ2λ3 + λ3
2)

,

β2 = 1
√

λ1(λ1
2 − λ1λ2 − λ1λ3 + λ2λ3)

(36)

− 1
√

λ2(λ1λ2 − λ1λ3 − λ2
2 + λ2λ3)

+ 1
√

λ3(λ1λ2 − λ1λ3 − λ2λ3 + λ3
2)

.
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s0 = 1
2 − 1

γ2 + γ2 −
√

γ4 + 4γ2 + 2

(γ2 +
√

γ4 + 4γ2)
√

γ4 + 4γ2
√

1/2 γ2 + 1 + 1/2
√

γ4 + 4γ2

− γ2 +
√

γ4 + 4 γ2 + 2

(γ2 −
√

γ4 + 4 γ2)
√

γ4 + 4γ2
√

1/2γ2 + 1 − 1/2
√

γ4 + 4γ2

(37)

s1 = 1 + 2
γ2 − γ2 −

√
γ4 + 4γ2 + 4

(γ2 +
√

γ4 + 4γ2)
√

γ4 + 4γ2
√

1/2γ2 + 1 + 1/2
√

γ4 + 4γ2

+ γ2 +
√

γ4 + 4γ2 + 4

(γ2 −
√

γ4 + 4γ2)
√

γ4 + 4γ2
√

1/2γ2 + 1 − 1/2
√

γ4 + 4γ2

(38)

s2 = − 1
γ2 + 2

(γ2 +
√

γ4 + 4γ2)
√

γ4 + 4γ2
√

1/2γ2 + 1 + 1/2
√

γ4 + 4γ2

− 2

(γ2 −
√

γ4 + 4 γ2)
√

γ4 + 4γ2
√

1/2γ2 + 1 − 1/2
√

γ4 + 4γ2

(39)

(U−1)11 = 1√
2γ2 + 4 − 2γ

√
γ2 + 4

+ 1√
2γ2 + 4 + 2γ

√
γ2 + 4

+ γ√
γ2 + 4

√
2γ2 + 4 − 2γ

√
γ2 + 4

− γ√
γ2 + 4

√
2γ2 + 4 + 2γ

√
γ2 + 4

(40)

(U−1)12 = (U−1)21 = 2√
γ2 + 4

√
2γ2 + 4 + 2γ

√
γ2 + 4

− 2√
γ2 + 4

√
2γ2 + 4 − 2γ

√
γ2 + 4

(41)

(U−1)22 = − 1√
2γ2 + 4 − 2γ

√
γ2 + 4

− 1√
2γ2 + 4 + 2γ

√
γ2 + 4

+ γ√
γ2 + 4

√
2γ2 + 4 − 2γ

√
γ2 + 4

− γ√
γ2 + 4

√
2γ2 + 4 + 2γ

√
γ2 + 4

(42)

R11 = 1√
2γ2 + 4 − 2γ

√
γ2 + 4

+ 1√
2γ2 + 4 + 2γ

√
γ2 + 4

+ γ√
γ2 + 4

√
2γ2 + 4 + 2γ

√
γ2 + 4

− γ√
γ2 + 4

√
2γ2 + 4 − 2γ

√
γ2 + 4

(43)

R12 = R21 = 2√
γ2 + 4

√
2γ2 + 4 + 2γ

√
γ2 + 4

− 2√
γ2 + 4

√
2γ2 + 4 − 2γ

√
γ2 + 4

(44)

R22 = − 1√
2γ2 + 4 − 2γ

√
γ2 + 4

− 1√
2γ2 + 4 + 2γ

√
γ2 + 4

+ γ√
γ2 + 4

√
2γ2 + 4 − 2γ

√
γ2 + 4

− γ√
γ2 + 4

√
2γ2 + 4 + 2γ

√
γ2 + 4

(45)
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