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Highlights 

► The orthotropic solids containing doubly periodic cracks is solved. 

► The high-precision of the proposed solution is verified. 

► Stress intensity factor and crack tearing displacement are studied. 

► An analytical formula is proposed for estimating effective shear modulus. 
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ABSTRACT 

The doubly periodic arrays of cracks represent an important mesoscopic model for analysis 

of the damage and fracture mechanics behaviors of materials. Here, in the framework of a 

continuously distributed dislocation model and singular integral equation approach, a highly 

accurate solution is proposed to describe the fracture behavior of orthotropic solids weakened by 

doubly periodic strip-like cracks on rectangular lattice arrays under a far-field longitudinal shear 

load. By fully comparing the current numerical results with known analytical and boundary 

element solutions, the high precision of the proposed solution is verified. Furthermore, the effects 

of periodic parameters and orthotropic parameter ratio on the stress intensity factor, crack tearing 

displacement, and effective shear modulus are studied, and an analytically polynomial estimation 

for the equivalent shear modulus is proposed in a certain range. The interaction distances among 

the vertical and horizontal periodic cracks are quite different, and their effects vary with the 

orthotropic parameter ratio. In addition, the dynamic problem is discussed briefly in the case 

where the material is subjected to harmonic longitudinal shear stress waves. Further work will 
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continue the in-depth study of the dynamics problem of the doubly periodic arrays of cracks.  

KEYWORDS  

Integral equation method; orthotropic material; doubly periodic crack; stress intensity factor; crack 

tearing displacement; effective shear modulus 

1. Introduction 

In this paper, we discuss the interaction effect of multiple cracks in fracture problems in the 

context of doubly periodic rectangular lattice arrays of strip-like cracks (DPRC) in an infinite 

orthotropic solid. The fracture problem of a doubly periodic array of cracks (DPC) has been an 

open problem for more than 40 years [1]. The DPC requires that cracks are of the same length and 

arranged in a doubly periodic arrays [1, 2]. The study of such an idealized model can be used to 

gain insight into complex multiple crack interaction effects in order to analyze the damage and 

fracture mechanics behaviors of materials [3, 4].  

First, we summarize the history of the study of the DPC problem under longitudinal shear 

load. Much work on the problem of a doubly periodic array of antiplane cracks has focused on 

fracture studies and equivalent modulus analyses. A number of studies have been devoted to 

accurately solving the DPC fracture problem. An analytic method was introduced to solve this 

problem based on a complex function method and doubly periodic function theory [5–6]. Based 

on the Jacobi elliptic functions, Chang [7] and Kuang [8] obtained general solutions for simply 

closed forms of the stress intensity factor (SIF) of DPRC subjected to concentrated forces on the 

surface of each crack. By combining elliptical function theory and a conformal mapping technique, 

Hao [9] obtained a solution in closed form for a DPC problem with the centers of cracks on the 

tops of the isosceles triangles. Tong et al. [10] extended Hao’s work and derived a closed-form 

solution for a piezoelectric material with a DPC under a far-field antiplane mechanical load and 

inplane electrical field. Further studies using similar methods have considered doubly periodic 

arrays of cracks or rigid-line inclusions in various different materials [11–13]. 

Many studies have been devoted to the numerical analyses of the DPC fracture problem. 

Karihaloo [14–16] established a Cauchy kernel singular integral equation with series form for the 
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plane and antiplane problem of DPC, but they did not obtain a numerical solution. By solving the 

integral equation, Pak and Goloubeva [17] studied the influence of DPRC on the electroelastic 

properties of piezoelectric materials. Employing oblique coordinates, Malits [18] established a 

Fredholm integral equation to study the problem of a doubly periodic array of strip-shaped thin 

rigid inclusions. The work described so far used the integral equation method to solve the DPC 

problem. Other numerical methods have also been established. Yan and Jiang [19] developed an 

eigenfunction expansion and variational method for analysis of the DPC problem. Pasternak [20] 

developed a boundary element method for doubly periodic arrays of cracks and thin 

in-homogeneities in an infinite magnetoelectroelastic medium. Williams and Parnell [21] 

proposed a scheme to solve the effective antiplane elastic properties of an orthotropic solid 

weakened by a DPC. Recently, Shi [22,23] further developed the integral equation method and 

analyzed the DPC in the periodic layered composite and elastoplastic DPC problems. In particular, 

the accuracy of this integral equation method has been proven through a comparison of its results 

with the well-known closed-form solutions [22,23]. 

The multiple cracks problem has also been used to study elastic wave scattering caused by 

damage and delamination. For example, by assuming the delamination or damage interface to be a 

set of multiple cracks, some results related to wave scattering by delamination or damage can be 

obtained [24]. Many studies have used the spring model to simulate ultrasound interaction with 

planar damaged interfaces with various structures. Lekesiz et al. [25] obtained explicit analytical 

expressions for the effective spring stiffnesses of a planar periodic array of collinear cracks 

between two dissimilar isotropic materials in the two-dimensional (2D) case, and Golub et al. [26] 

investigated the effective spring boundary conditions for a damaged interface between dissimilar 

media in the three-dimensional (3D) case. Mykhas'kiv et al. [27] proposed a boundary integral 

equation method for the investigation of time-harmonic elastic wave propagation through a doubly 

periodic array of penny-shaped cracks in a 3D infinite elastic solid. Recently, Sumbatyan and 

Remizov [28] developed a 3D theory for acoustic metamaterials with a triple-periodic array of 

rectangular-shaped cracks. 

The present work constitutes a continuation of the search for a natural and highly accurate 

solution for fractures in DPRC in infinite orthotropic materials under longitudinal shear loading. 
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In the framework of a continuously distributed dislocation model, the aim of this study was to 

reveal the fracture characteristics and predict the effective properties of such cracked materials. To 

this end, the influences of periodic parameters and orthotropic parameter ratio on the SIF, crack 

tearing displacement (CTD), and effective shear modulus are studied. 

2. Theory/Calculation 

2.1 Theoretical model 

 

Fig. 1. (a) Doubly periodic crack problems; (b) Rectangular unit cell containing a single crack and its 

doubly periodic boundary condition for antiplane shear loading. 

Figure 1 shows the fracture model, which consisted of DPRC in an infinite orthotropic 

medium subjected to remote longitudinal antiplane shear loading. The rectangular cells are shown 

in Fig. 1(b), in which ω1 and ω2 are the vertical periodic parameter and the horizontal periodic 

parameter, respectively; they are also the side lengths of the rectangular unit cells along the x and 

y directions. The static far-field antiplane shear stress is denoted by τ0. To solve this static problem, 

the governing equation and constitutive equation of the orthotropic materials can be written as 

follows [29]: 

55 44,zx zyC C
w w

x y
 

 
 

   
(1) 

0
zyzx

x y

 
 

  , 
(2) 

where w is the antiplane displacement, τzx and τzy denote the antiplane stress, and C44 and C55 

represent the principal shear modulus of the orthotropic material along the y- and x-axes in Fig. 
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1(a), respectively. 

Substituting Eq. (1) into Eq. (2) yields the following governing equation: 

2 2
2

2 2
0

w w
k

x y

 
 

  , 
(3) 

where 55 44/Ck C  is a dimensionless parameter that describes the orthotropic characteristic. 

As shown in Fig. 1(b), for remote antiplane shear loadings, the boundary conditions of the 

rectangle of the unit cell can be described as follows [22,23]. 

(a) According to the principle of superposition, one can transform the far-field loading 

2 0lim ( , )zy
y

x y 


  onto the crack surfaces. Then, the linear fracture solution of the DPRC is 

considered when a pair of the equivalent antiplane shear tractions τ(x)=τ0 act on the crack surface. 

Thus, the boundary conditions at the crack surface in the doubly periodic unit cell can be given as:  

     2 2,0 ,0 , / 2, / 2zy zyx x x      
 (4) 

       2 2,0 ,0 , / 2, , / 2w x w x x a a     
 (5) 

   0,0 , ,zy x x a a    
. (6) 

(b) In the DPRC problem, owing to vertical periodicity, the displacements and stress on the 

upper and lower surfaces of the doubly periodic unit cell are identical [22,23]:  

         1 1 1 1 2 2, / 2 , / 2 , , / 2 , / 2 , / 2, / 2zy zyx x w x w x x            
. (7) 

(c) For the DPRC problem, owing to horizontal periodicity, the periodic boundary conditions 

imposed on the left and right surfaces of the periodic unit cell are [22,23]: 

     2 2 1 1/ 2, / 2, 0, / 2, / 2zx zxy y y         
. (8) 

2.2 Theoretical analysis 

In this work, our previously proposed method [22,23] is developed to solve this new problem. 

By applying the separation variable method, the displacement w and stresses τzx and τzy can be 

given as: 

0

0

[ ( ) ( ) ]cos( ), 0

( , )

[ ( ) ( ) ]cos( ), 0

kn y kn y

n

kn y kn y

n

A n e B n e n x y

w x y

C n e D n e n x y

 

 


















 


 


 




  
(9) 
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5

0

5

55

0

( ) ( ) sin( ), 0

( , )

( ) ( ) sin( ), 0

kn y kn y

n

zx

kn y kn y

n

n A n e B n e n x y

x y

n C n e

C

D n e n x yC

 

 

 



 














     


 


     




  
(10) 

4

0

4

44

0

( ) ( ) cos( ), 0

( , )

( ) ( ) cos( ), 0

kn y kn y

n

zy

kn y kn y

n

kn A n e B n e n x y

x y

kn C n e D n e n x y

C

C

 

 

 



 














    


 


    




 , 
(11) 

where 22 /   , and the four unknown functions A, B, C, and D are to be determined by 

considering the boundary conditions. 

The solution of the above boundary value problem can be found using the CTD or 

displacement jump on the crack faces: 

   
  ,

,0 ,0

0,a

a

l
x

a u du x a
w x w x

x L

 




  
  



. 

(12) 

Note that the function  la u  automatically satisfies   0
a

l
a

a u du


  because of the 

symmetry of the fracture analysis.  

In terms of the Fourier-transformed CTD, the shear stress in the doubly periodic unit cell can 

be written as: 

 

 

 

 

1

1

1

1

44

2

4

0

0

4

2

sin( )cos( ) , 0
1

( , )

sin( )cos( ) , 0
1

kn ykn y a

lkn
a

n

zy kn y kn y a

lkn
a

n

k e e
a t n t n x dt y

e
x y

k e e
a t n t n x

C

d
C

t y
e

 



  



 




 


 




  




 



 


 

 

  . 
(13) 

Then, one can transform the crack surface boundary conditions in Eq. (6) into an integral 

equation: 

   
1

1
0

2

4

0

4 1
,0 sin( )cos( )

1

kna

zy lkn
a

n

k e
x n t n x a t dt

e

C



   








 
   

  


. 
(14) 

Next, we recall the identity [22,23] 

     
   

0

1
sgn sin cos cot cot

4 2 2
n

t x t x
n nt nx

 
 





  
  

 


. 
(15) 

Now, one can obtain a Hilbert kernel singular integral equation of the first kind: 
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1
44

1
2 0

1
0

1 ( ) 2sin( )cos( )
cot ( )

2 2 1
lkn

n

a s r n as n ar
a s ds

ke aC

    







 
  

  
 ,

 
(16) 

where , , ( ) ( ) ( ).l l ls t a r x a a s a as a t     

The version of identity Eq. (15) used in previous studies of the periodic crack problem 

contained some mistakes. These could lead to errors in the derivation of the singular integral 

equation, which would seriously affect the correctness of the solution to the DPC problem. Here, 

the correct version of Eq. (15) obtained in our previous work [22,23] is used. Previous researches 

[22,23] have confirmed that this identity is suitable for solving DPC problems. 

2.3 Calculation 

According to the theory of singular integral equations, the solution of ( )la s
 can be 

expressed as 

 
 

44

2 0

2
, 1

1
l

F s
a s s

kaC s

   


,

 
(17) 

where  F s  is an unknown function to be evaluated numerically, which is continuous and 

bounded for 1s   and nonzero at the end points 1s   . The solution  F s  of the above 

singular integral equation can be solved numerically using the Lobatto–Chebyshev integration 

formula [22,23]. Thus, it provides a complete numerical solution of the boundary value problem 

of DPRC.  

3. Results and discussion 

In the present work, we are most interested in the following three quantities: SIFs, CTDs, and 

effective shear modulus of an infinite orthotropic solid with DPRC. In the numerical computations, 

the material constants of the orthotropic materials are taken to be C44=E/2/(1+v), E=512 GPa, and 

v=0.3. Given the orthotropic parameter k , the shear modulus C55 can be determined by 

55 44/Ck C .  

3.1 Stress intensity factors 

The most important parameters for crack-tip characterization in linear elastic fracture 

mechanics are the SIFs. Owing to the symmetry of the problem, only the SIF of the right crack tip 

is studied here. It is defined by 
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III lim ( ,0) 2 ( )yz
x a

K x x a 


  ,

 
(18) 

and the stress ( ,0)yz x  at the x-axis is 

1

1

1
2 0

44 1 ( ) 2sin( )cos( )
( ,0) cot ( )

2 2 1
yz lkn

n

k a s r n as n ar
x a s ds

aC

e


  












 

  
  

 .

 
(19) 

This treatment is similar to the approach used by Erdogan and Gupta [30]. The first term in 

Eq. (19) has a Cauchy-type singularity at s r . To separate this, we observe that around s r , 

( ) 2 1
cot

2 ( )

a s r

a s r s r






  
   

  
.

 
(20) 

Thus, the expression ( ,0)yz x can be simplified as 

1

44
1

1
2

1

1
0

44

2

1
( ,0) ( )

( )

2sin( )cos( ) 1
( )

1

yz l

lkn

n

k
x a s ds

a s r

k n as n ar
a s ds

s r

C

e

aC

a



 

 















 


  
   

    




.

 
(21) 

For analysis of SIF at the crack tip, only the singular part of the stress needs to be considered. 

Substituting Eq. (21) into Eq. (18) yields the following expression for the SIF: 

1

III
1

2

1 1

0
2 21 1, 1

0 0
2

4

2

4 1
lim ( ,0) 2 ( ) lim 2 ( ) ( )

( )

2 ( ) 1 ( ) 1 ( ) ( )
lim

1 1

2 ( )(1) (1)
lim

b
yz l

x a x a

x a r

x a

k
K x x a x a a s ds

a s r

x a F r F s F r
ds ds

a s r s rs s

x aF F
a

ax

a

a

C
  

 






 
  

 

 

 





 

  



    


  
       


 





  .

 
(22) 

In the derivation of Eq. (22), the following identity is employed 

1

2 21

1 1 1
, 1

( ) 1 1
ds r

s r s r 

  
  

 .

 
(23) 

Dividing by 0 a  , the normalized SIF is defined as 

0 (1) /K F a  .

 
(24) 

To verify the correctness of this numerical method, we compared the numerical results for 

SIF with those of the previous analytical solutions [10,11] and of a numerical solution obtained 

using the boundary element method [20]. 

Table 1 presents SIF values for infinite isotropic and orthotropic solids with a DPRC. As 

shown in the table, as the number of nodes increased, the calculation error of the present results 

decreased. In particular, when the number of nodes was equal to 20, the absolute error of the 
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results was less than one in ten-thousand, whereas the maximum absolute error of the boundary 

element method (BEM) is 0.114 [20]. In addition, the numerical method presented in this paper 

showed very high efficiency for the elongated rectangular doubly periodic case and for orthotropic 

solids. The comparison of numerical solutions for different node numbers proves that the proposed 

method has good convergence and high precision. 

Table 1. A comparison of dimensionless SIF values obtained using BEM results, analytical solutions, 

and the proposed numerical solutions 

2a/ω2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

C55/C44=1, ω1=ω2 

Present solutions, 

node number = 5 1.00396 1.01632 1.03855 1.073511 1.12627 1.20642 1.33438 1.56417 2.11899 

Present solutions,  

node number = 10 
1.00396 1.01632 1.03855 1.073511 1.12627 1.20642 1.33437 1.56396 2.11294 

Present solutions, 

node number = 20 
1.00396 1.01632 1.03855 1.073511 1.12627 1.20642 1.33437 1.56396 2.11293 

Analytical solutions [10] 1.0040 1.0163 1.0386 1.0735 1.1263 1.2064 1.3344 1.5640 2.1129 

BEM with  

element number= 21[20] 1.0043 1.0167 1.0389 1.0735 1.1266 1.2069 1.3351 1.5660 2.1251 

C55/C44=10, ω1=ω2 

Present solutions, 

node number = 5 1.00414 1.01698 1.03983 1.07532 1.12837 1.20846 1.33601 1.56518 2.11937 

Present solutions,  

node number = 10 
1.00414 1.01698 1.03983 1.07532 1.12837 1.20846 1.33600 1.56497 2.11332 

Present solutions, 

node number = 20 
1.00414 1.01698 1.03983 1.07532 1.12837 1.20846 1.33600 1.56497 2.11331 

Analytical solutions [11] 1.0041 1.0170 1.0398 1.0753 1.1284 1.2085 1.3360 1.5650 2.1133 

BEM with  

element number= 21[20] 1.0045 1.0173 1.0402 1.0757 1.1287 1.2089 1.3368 1.5671 2.1255 

C55/C44=0.1, ω1=ω2 

Present solutions, 

node number = 5 0.98536 0.95653 0.93852 0.94619 0.98742 1.07189 1.22023 1.48592 2.08498 

Present solutions,  

node number = 10 
0.98536 0.95653 0.93852 0.94619 0.98743 1.07194 1.22040 1.48630 2.08099 

Present solutions, 

node number = 20 
0.98536 0.95653 0.93852 0.94619 0.98743 1.07194 1.22040 1.48630 2.08099 

Analytical solutions [11] 0.9854 0.9565 0.9385 0.9462 0.9875 1.0720 1.2204 1.4863 2.0810 

BEM with  

element number= 21[20] 0.9857 0.9570 0.9391 0.9469 0.9884 1.0731 1.2220 1.4889 2.0922 

C55/C44=1, ω1=0.05ω2 

Present solutions, 

node number = 5 0.61072 0.48622 0.45449 0.45639 0.48142 0.53466 0.63705 0.85411 1.49591 

Present solutions,  

node number = 10 
0.61077 0.48530 0.45112 0.45341 0.48311 0.54551 0.66214 0.89871 1.53990 

Present solutions, 

node number = 20 
0.61077 0.48529 0.45112 0.45348 0.48330 0.54572 0.66211 0.89826 1.54067 

Analytical solutions [10] 0.6108 0.4853 0.4511 0.4535 0.4833 0.5457 0.6621 0.8983 1.5407 

BEM with  

element number= 21[20] 0.6117 0.4870 0.4544 0.4594 0.4935 0.5627 0.6906 0.9503 1.6551 

Maximum error          

Present solutions, 

node number = 20 
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

BEM with  

element number= 21[20] 0.0009 0.0017 0.0033 0.0059 0.0102 0.0170 0.0285 0.0520 0.11403 
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 (a)  

 

 

(b)  

Fig. 2. Variation of the dimensionless SIF with doubly periodic parameters. (a, b) Comparison of SIF 

with a known solution for isotropic materials. 
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(a) 

 

 

 
(b) 

Fig. 3. Variation of the dimensionless SIF with doubly periodic parameters and orthotropic 

characteristic. (a) Comparison of SIF with a known solution for orthotropic material; (b) variations in 

SIF with the vertical periodic parameter and orthotropic characteristic. 

Using the complex variables method and elliptical function theory, some closed-form 

solutions to problems of DCP have been obtained [10,11]. Owing to the specificity of the 

problem, a previous study [10] of piezoelectric materials resulted in a closed-form solution 

that was identical to the solution for the DPC problem in isotropic materials. For isotropic and 
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orthotropic materials, respectively, Figs. 2 and 3 compare the results of the present work using 

the singular integral equation method with results obtained in previous studies [10,11]. The 

curves obtained by the different methods were exactly the same, and our numerical results 

were consistent with those of previous studies. This further confirms the correctness of the 

singular integral equation method presented here. Furthermore, the SIF decreased as the 

horizontal period parameter 2 increased, and increased as the vertical period parameter 1 

increased. These observations can be explained by the magnification effect of collinear cracks 

and the shielding effect of horizontal cracks. In addition, for orthotropic materials, the SIF of 

DPRC strongly depends on the orthotropic parameter; as shown in Fig. 3, the SIF increased as 

the orthotropic parameter increased. 

3.2 Stress field 

By using the numerical solution of ( )F s , the following final expressions for the strain and 

stress fields of the DPRC problem were obtained: 
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in which m  denotes the numerical quadrature node number, 0 1 11/ 2, 1m m         is the 

weight coefficient for the Lobatto–Chebyshev collocation method, and js  are the Chebyshev 

collocation points,  

cos , 0,1,2,j

j
s j m

m
  ．

 
(28) 

A comparison of the numerical solutions with finite element results for the dimensionless 
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stress zy/0 is provided in Table 2 for the case where 1=2=4a. The numerical solution was in 

excellent agreement with the previous analytical solution for various values of C55/C44. This 

comparison shows that the numerical method presented in this paper is not only suitable for the 

analysis of SIF but can also be used to calculate the stress value of each point, with a very high 

precision. Thus, the calculation results presented here provide a baseline reference that can be 

used to verify the accuracy of other numerical and approximate methods. 

Table 2. Comparison of dimensionless stress between the proposed numerical solution and the previous 

finite element method (FEM) results and the analytical solution for different C55/C44 

 

C55/C44 
Computational points 

Solution method (0.5ω2,0) (0.5ω2,0.25ω2) (0.5ω2,0.5ω2) (0.25ω2,0.5ω2) (0,0.5ω2) 

0.1 

FEM results [11] 1.5758 1.5671 1.5549 1.1165 0.2565 

Analytical solutions [11] 1.57786 1.56699 1.55634 1.11571 0.25969 

Present numerical 

solutions 
1.577847 1.566987 1.556341 1.115714 0.259692 

1.0 

FEM results [11] 1.4175 1.1896 1.0829 1.0006 0.9111 

Analytical solutions [11] 1.41685 1.19142 1.08441 1.00186 0.91188 

Present numerical 

solutions 
1.416838 1.191422 1.084408 1.001863 0.911875 

10.0 

FEM results [11] 1.4317 1.0054 0.9992 0.9991 0.9990 

Analytical solutions [11] 1.41421 1.00694 1.00010 1.00000 0.99990 

Present numerical 

solutions 
1.414120 1.006937 1.000096 1.0000000 0.999903 
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Fig. 4. Contour plot of dimensionless stresses zy/0 with different orthotropic parameters. 

Figure 4 shows a contour plot of the amplitude of the dimensionless stress zy/0 in a fixed 

area of size 12 mm×12 mm, with a=1 mm, ω1 = ω2=4a, τ0=100 MPa, and k=1. The stress fields 

were very similar to the prediction results. For example, the antiplane stress τzy equaled zero on the 

crack surface. The singularity of the stress fields appeared in the crack tip area. Notably, the stress 

distribution was related to orthotropic parameters. It is well known that a shielding effect of 

multiple parallel cracks and an amplifying effect of multiple collinear cracks exist simultaneously 

in a DPRC problem. As can be seen from the contour plot of the stress τzy, the small orthotropic 

parameter improved the shielding effect of multiple parallel cracks, but the larger orthotropic 

parameter strengthened the amplifying effect of collinear cracks. For instance, compared with the 

results for C55/C44=10, the interference effect between collinear cracks was markedly weakened for 

C55/C44=0.5. Thus, a small orthotropic parameter can effect a decrease in stress concentration and 

further reduce the corresponding SIF. This is a good explanation of the variation of SIF with the 

orthotropic parameter shown in Fig. 3. 

3.3 Crack tearing displacement 

The displacement across the crack faces can be transformed into 
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(29) 

Then, the CTD across the crack faces can be obtained by considering w w w   . 

In the following, the single crack problem for an infinite isotropic material is discussed and 

its corresponding CTD is calculated. For ease of discussion, the result of the single crack problem 

will be used as a reference value to normalize the CTD results presented for the DPRC problem.  

For an infinite isotropic material containing a single central crack with length 2a, the 

following integral equation can be obtained by the integral equation method: 
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This equation has the following analytical solution: 
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and the corresponding CTD can be obtained: 
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(32) 

Further, one can define the normalized CTD (NCTD) as the ratio of the CTD value for the 

DPC problem to the maximum displacement value of the CTD for the single crack problem: 
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(33) 
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(c) 

 

 

 

 

 
(d) 

Fig. 5. Effects of periodic parameters and orthotropic parameter on CTD. 

Here, the CTD results for the DPC problem obtained in the present work are compared with 

the analytical results for the single crack problem. In this paper, the parameters selected for 

solving the DPC problem satisfied ω1 = ω2=10a. As the doubly period parameter was much larger 

than the crack size, the interaction between the DPC was weak; thus, the DPC problem solved 

here can be considered to be equivalent to a single crack problem. As shown in Fig. 5(a), the 
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calculation results were completely consistent with the analytical solution for the single crack 

problem, confirming that the proposed numerical method could solve the CTD across the crack 

surface with high accuracy. Further, Fig. 5(b–d) shows the influences of periodic parameters and 

orthotropic parameter ratio on NCTD. Increased crack size, increased crack longitudinal spacing, 

and decreased orthotropic parameter all led to increases in NCTD. The NCTD value showed a 

trend of increasing first and then gradually stabilizing with increasing vertical periodic parameter. 

When the vertical periodic parameter of the crack reached about twice the crack length, the NCTD 

no longer increased with further increases in the vertical periodic parameter. With decreasing 

crack size, the NCTD value exhibited a trend of decreasing first and then gradually stabilizing. 

When the crack size was less than one-fifth of the horizontal parameter of the crack, the NCTD no 

longer decreased with decreasing crack size. 

3.4 Effective antiplane shear modulus 

For the array of cracks under consideration, the effective antiplane shear modulus along the 

x-axis, Cx= C55, remained unchanged. The effective antiplane shear modulus along the y-axis, Cy, 

could be obtained using average field theory [11]: 

/y zy zyC   ,

 
(34) 

where the overline denotes the average of a corresponding physical quantity. From the far-field 

stress condition, it follows that [11] 

0zy  .

 
(35) 

Owing to the symmetry of the problem, the antiplane displacement w on the upper unit cell 

boundary and that on the non-cracked region collinear with the crack were constants; these values 

are respectively denoted by ,A Bw w . The average strain zy  can be obtained as follows:  

0 1 0 44

1 44 1 44 1
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(36) 

Substitution of Eqs. (36) and (37) into Eq. (35) yields 

0 44 1 44 1

1 0 44 1 442 2
y

B B

C C
C

w C C w
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 
,

 
(37) 

where 0= /B Bw w   represents the strain generated by the unit load, and Bw  is independent of 

applied loading as the linear elasticity assumption is satisfied. 

Further, the dimensionless effective antiplane shear modulus along the y-axis can be defined 
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as 
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(38) 

From Eq. (38), it is clear that the effective antiplane shear modulus is independent of applied 

loading for the linearly elastic stage. 

Table 3 presents a comparison of the numerical results for the effective antiplane shear 

modulus with the previous analytical solutions [11] and the numerical solution obtained using the 

boundary element method [20]. This comparison shows that the numerical method has a very high 

efficiency in the general and elongated rectangular doubly periodic case and for orthotropic solids. 

The comparison of numerical solutions proves that the proposed method also has high precision. 

The variation of the effective antiplane shear modulus C0 is displayed in Fig. 6. As shown in 

Fig. 6(a), the finite element results [11] coincided with the numerical solution. Fig. 6(b) provides a 

comparison between the numerical results and the analytical solutions. For various configurations 

of doubly periodic parameters, the numerical results were in good agreement with the analytical 

solutions. Furthermore, the effective antiplane shear modulus C0 increased with increasing vertical 

periodic parameter, because the number of cracks per unit area decreased as the vertical periodic 

parameter increased. The effective antiplane shear modulus C0 also increased monotonously with 

increasing C55/C44, possibly owing to the increased overall stiffness of the material. In addition, 

when C55/C44 and 2/1 were fixed, the effective modulus decreased with increasing a/1. 

Table 3. Comparison of dimensionless effective antiplane shear modulus for the BEM results, analytical 

solutions, and proposed numerical solutions 

2a/ω2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

C55/C44=1, ω1=ω2 

Present solutions 0.99217 0.96905 0.93164 0.88133 0.81967 0.74776 0.66613 0.57292 0.45909 

Analytical solutions [11] 0.9922 0.9691 0.9316 0.8813 0.8196 0.7478 0.6661 0.5728 0.4590 

BEM solutions [20] 0.9922 0.9691 0.9317 0.8814 0.8198 0.7480 0.6664 0.5731 0.4593 

C55/C44=10, ω1=ω2 

Present solutions 0.99751 0.98999 0.97729 0.95908 0.93479 0.90335 0.86284 0.80884 0.72818 

Analytical solutions [11] 0.9975 0.9900 0.9773 0.9591 0.9348 0.9034 0.8628 0.8088 0.7281 

BEM solutions [20] 0.9975 0.9900 0.9773 0.9591 0.9348 0.9035 0.8630 0.8090 0.7284 

C55/C44=0.1, ω1=ω2 

Present solutions 0.97610 0.91365 0.82955 0.73578 0.63817 0.53898 0.43928 0.33907 0.23595 

Analytical solutions [11] 0.9761 0.9137 0.8296 0.7358 0.6381 0.5390 0.4393 0.3390 0.2359 

BEM solutions [20] 0.9761 0.9137 0.8297 0.7359 0.6383 0.5392 0.4395 0.3392 0.2361 
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 (a) 

 
(b) 

Fig. 6. Comparison of the effective modulus C0 from finite element results and from the present 

solution. 

C55/C44=1, ω1=0.05ω2 

Present solutions 0.92192 0.82200 0.72202 0.62205 0.52207 0.42209 0.32209 0.22212 0.12214 

Analytical solutions [11] 0.9220 0.8221 0.7221 0.6221 0.5221 0.4221 0.3221 0.2221 0.1221 

BEM solutions [20] 0.9221 0.8222 0.7222 0.6222 0.5222 0.4221 0.3222 0.2222 0.1222 

Maximum error          

Present solutions <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

BEM solutions 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002 0.0003 
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(a) 

 

 
(b) 

Fig. 7. Polynomial series formulae for the effective modulus C0. 

It is possible to obtain the values of SIF, OTD, and effective modulus C0 for various 

combinations of crack half-length a, doubly periodic parameter1 and 2, and orthotropic 

parameter C55/C44. However, in some cases, a singular integral equation must be solved 

numerically to obtain the required values. Even when using the analytic solution based on 

elliptical function theory and the conformal mapping technique [10,11], a complex numerical 

calculation of Jacobi elliptic function cannot be avoided. For convenience, we aimed to construct a 

                  



 23 

polynomial series formula for the effective shear modulus C0. Figure 7(a) gives an estimate of the 

effective shear modulus C0 of an isotropic material:  

2
0 1 0.7663 0.416C     ,

 
(39) 

where  2
1 24 /a   represents the density of cracks.  

For orthotropic materials, the estimated expression of the effective shear modulus C0 

becomes more complicated. In the case satisfying C55/C44>0.5, 1/2>0.5, and 2a/2<0.5, we 

obtained the following polynomial analytical formulae with higher precision by fitting 

   2 3 4 2
0 , 1 1 122.5 243.6 209.6 56.5 00.02322 .416C F              ,

 
(40) 

where  2
1 2 44 554 / , /a C C    . Here, Eq. (39) is matched with Eq. (40) by setting 1  . 

Values of our polynomial analytical formulae are plotted in Fig. 7, with dashed lines showing 

close agreement with the numerical solution, under various parameter combinations shown as 

points. 

3.5 Crack size studies 

 

Fig. 8. Variation in SIFs versus crack size a for ω1/ω2=0.5. 

The variation in SIF versus the crack size a is shown in Fig. 8, where ω1 =3 mm and ω2=6 

mm. The SIF increased with increasing crack size when the crack size 2a was greater than 0.5ω2. 
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In addition, as can be seen in Fig. 8, the SIF increased steeply as the crack size 2a approached the 

horizontal periodic parameter ω2. Notably, the materials were mostly in a complete failure state as 

the crack size approached the half-length of the horizontal periodic parameter ω2. Therefore, the 

SIF showed a rapid increase when the materials approached failure conditions. 

4. Simple discussion of dynamic problem 

By combining elliptical function theory and the conformal mapping technique, analytical 

solutions can be obtained for some special DPC problems [9–11]. However, this analytic method 

is based on a complex function method. For many complex DPC antiplane problems (e.g., 

composite materials, elastoplastic problems, and dynamic problems), the antiplane displacement 

field can no longer be expressed by the real parts of analytical functions; this will result in a 

failure to solve some complex DPC problems using the analytical method proposed in Refs [9–11]. 

It should be noted that the method proposed in this paper could be extended to various complex 

DPC problems, such as the elastoplastic DPC problem [22] and the DPC problem in periodic 

layered composites [23]. In addition, the presence of an infinite number of cracks leads to some 

difficulties in obtaining high-precision and fast solutions using the finite element method. Here, 

we propose an efficient and fast numerical method based on the singular integral equation method. 

In particular, when the number of numerical nodes is equal to 20, the absolute error of the 

calculation results is less than one in ten-thousand. In addition, the computational time required 

for one case is about 0.0084 sec. The numerical program was run on a PC with an Intel i7-7770 @ 

3.60 GHz 64-bit processor, using MATLAB R2014a for Windows 10. 

In the work described above, the static problem of orthotropic solids weakened by DPRC 

under a longitudinal shear load was solved. In this section, the dynamic behavior of orthotropic 

solids weakened by DPRC is investigated. In dynamic problems, the distribution of cracks and 

material parameters are consistent with those of static problems, but it is assumed that the 

propagation direction of the harmonic elastic antiplane shear stress wave is vertical to the cracks. 

Let ω be the frequency of the incident wave, and let  , ,w x y t denote the mechanical displacement, 

and  , ,zx x y t  and  , ,zy x y t  the antiplane shear stress field. For this harmonic problem, all the 

field quantities of  , ,w x y t ,  , ,zx x y t , and  , ,zy x y t  can be assumed to be in the following 
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form [31]: 

   ( , , ), ( , , ), ( , , ) ( , ), ( , ), ( , ) i t
zx zy zx zyw x y t x y t x y t w x y x y x y e     

 
(41) 

In what follows, the time dependence of i te   will be omitted. The DPRC boundary value 

problem for the harmonic antiplane shear waves can be simplified by considering the 

displacement only.  

The stress should satisfy the following equilibrium equations:  
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zyzx w
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(42) 

Substituting Eq. (1) into Eq. (42) yields the following governing equation: 
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(43) 

where / .l c  44 /c C   is the shear wave velocity and   denotes the mass density. 

By applying the separation of variables method, the displacement w and stresses τzx and τzy 

can be written as: 
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Following the process used to solve the static problem, a new Hilbert kernel singular integral 

equation of the first kind can be obtained for the dynamic DPRC problem: 
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(47) 

Again referring to the process used to solve the static problem, we can numerically solve the 

singular integral equation and analyze the SIFs, CTDs, and effective shear modulus of an infinite 
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orthotropic solid with DPRC subjected to harmonic longitudinal shear stress waves. 

Figure 9 shows a contour plot of the amplitude of the dimensionless stress zy/0 in a fixed 

area of size 8 mm×8 mm, with a=1 mm, ω1 = ω2=4a, τ0=100 MPa, and k=1. As shown in Fig. 9(a) 

and (c), the peak and valley of the stress field were evenly distributed on the rectangular lattice 

array in the absence of defects. In the figure, the red zone represents stress values greater than 0 

and the blue zone represents those less than 0; the red and blue zones have the same shape and 

size and are alternately arranged. When the circular frequency of the incident waves was la=2, 

compared with the results shown in Fig. 9(a), Fig. 9(b) revealed that the presence of cracks caused 

a change in the stress pattern at the left and right ends of the crack. This caused a rearrangement of 

the stress in the upper and lower crack and in the crack tip region; the area of the stress patch was 

reduced and it assumed an elongated elliptical shape. When the circular frequency of the incident 

waves was la=4, a comparison of the results shown in Fig. 9(c) and (d) revealed a more complex 

rearrangement of the stress map, in which the blue zone on the upper and lower surfaces of the 

crack split and grew in the y direction, overlapping the nearby red zone. The appearance of DPRC 

caused changes in the stress in the vicinity of the cracks, leading to changes in the overall contour 

plot. 

                  



 27 

 

Fig. 9. Contour plot of dimensionless stresses zy/0 with incident waves of different frequencies.  
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(a) 

 

 
(b) 

Fig. 10. Dynamic effects on the effective modulus C0. 
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Figure 10 presents further analysis of the dynamic effects on the equivalent modulus. As 

shown in Fig. 10(a), the harmonic longitudinal shear stress waves led to an enhancement of the 

equivalent modulus. The effect decreased as the modulus increased and gradually approached the 

results obtained in the static situation. As the circular frequency of the incident waves la increased, 

as shown in Fig. 10(b), the dynamic effect gradually increased and the equivalent modulus 

increased. 

5. Conclusions 

The natural and highly accurate solution presented here enables study of the DCRP problem 

for orthotropic solids using a continuously distributed dislocation model. The advantage of the 

proposed method is that it can achieve high-precision numerical solutions for various physical 

quantities that are related to DPRC problems. Obtaining a high-precision numerical solution in 

this way makes full use of the symmetry of the unit cell and avoids errors caused by the 

summation of doubly infinite series. This paper summarizes and compares the existing analytical 

and numerical results for this problem, thereby confirming the effectiveness of the proposed 

numerical method for high-precision calculations of SIF, CTD, and effective shear modulus. In 

particular, polynomial analytical formulae for the effective shear modulus in a certain range are 

presented to facilitate the use of the results. The preliminary study of the dynamic problem 

performed here demonstrates the potential of this approach. Future work is expected to include a 

detailed study of solids containing doubly periodic strip-like cracks subjected to harmonic 

longitudinal shear stress waves. 
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