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a b s t r a c t

Series solutions of the dynamics of capillary flows in a vertical circular tube are obtained by the
homotopy analysis method (HAM). The model proposed by Maggi and Alonso-Marroquin (2012) is
considered but with assumptions of constant contact angle and negligible air. In the case of capillary
flows oscillating around the equilibrium height, the series solution of the penetration distance of
the meniscus has the basis exp(mℜ[η1]τ ) cos(nℑ[η1]τ ) and exp(mℜ[η1]τ ) sin(nℑ[η1]τ ). By contrast,
in the case of capillary flows rising monotonically to the equilibrium height, the series solution of the
penetration distance of the meniscus can have either the basis exp[(mη1 + nη2)τ ], if η2/η1 ̸= Z, or
the basis exp(mη1τ ). The computed velocity of the capillary flow is found to be larger than that of the
experimental results. This discrepancy should be mainly caused by the neglect of both the variation
of contact angle and the expulsion of air out of the capillary. Besides, the velocity of the capillary flow
at the initial stage is determined by the Bond number and the viscosity effect becomes significant in
the latter stage, which is consistent with the results of previous literature.

© 2019 ElsevierMasson SAS. All rights reserved.

1. Introduction

Capillary flow widely exists in nature, such as the flow trans-
port in plants, soil, and pens. Many phenomena can be described
(under certain assumptions) by the models of capillary flow in
cylindrical tubes or porous materials [1–7]. The model charac-
terizing rise dynamics of liquid in a vertical circular tube is
as shown in Fig. 1, where r denotes the radius of the vertical
circular tube, g is the acceleration due to gravity, θ represents the
dynamic contact angle between the meniscus and the wall of the
tube, σ denotes the surface tension coefficient, h is the height of
meniscus with respect to the outside static surface, respectively.
The dynamic behavior of meniscus is primarily determined by
the balance between the inertia of the fluid, the capillary driving
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force, the weight of the liquid and the viscous resisting forces. The
first comprehensive investigation of the capillary rise dynamics
dates back to Bell and Cameron [8], Lucas [9] and Washburn [10],
who considered the capillary flow in a cylindrical tube of radius
r and presented the rate of penetration as

dh
dt

=
P(r2 + 4ϵr)

8µh
, (1)

where t is the time for a liquid of dynamic viscosity µ and slip
coefficient ϵ to penetrate a distance h into the capillary under the
driven pressure P . However, in the initial stage, i.e., t → 0, h → 0,
dh/dt → ∞ can be derived from Eq. (1), this singularity does
not coincide with reality. Since then, several nonlinear differential
equations were presented based on different assumptions on the
inertial force, entrance effect, and dynamic contact angle, etc.

Brittin [11] proposed a model by assuming the forces acting
on the liquid in an accelerating state to be the same as that in a
steady state

h
d2h
dt2

+
5
4

(
dh
dt

)2

+
8µ
ρr2

h
dh
dt

−
2σ cos θ

ρr
+ gh = 0, (2)

in which ρ denotes the density of the liquid. However, dh/dt ̸= 0
at initial moment (t → 0, h → 0), i.e., there also exists a
singularity in this model.
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Fig. 1. Rise dynamics of a liquid in a vertical circular tube.

Szekely et al. [12] further took the energy dissipation into
account and proposed a more rigorous equation that successfully
removes the singularity(
h +

7r
6

)
d2h
dt2

+ 1.225
(
dh
dt

)2

+
8µ
ρr2

h
dh
dt

−
2σ cos θ

ρr
+ gh

= 0. (3)

However, their treatment of dissipative effect refers to high
Reynolds number, whereas most wetting phenomena in capillar-
ies occur at low Reynolds number [13]. Levine et al. [13] further
proposed an improved theory(
h +

37r
36

)
d2h
dt2

−
2σ cos θ

ρr
+

8µ
ρr2

h
dh
dt

+ gh

+
1
2

[
4µ
ρr

dh
dt

+
7
3

(
dh
dt

)2
]

= 0. (4)

Subsequently, Xiao et al. [14] proposed a generalized model for
capillary flows in channels. For the flow in a capillary tube, this
model reads

(h + 1.028r)
d2h
dt2

+ 0.958
(
dh
dt

)2

+
8µ
ρr2

(h + 0.25r)
dh
dt

−
2σ cos θ

ρr
+ gh = 0. (5)

Maggi and Alonso-Marroquin [15] then considered the coupled
effect of liquid–gas interactions and proposed following govern-
ing equations of two-phase flow in a capillary

2πrσ cos θ − πr2gLρ(h) − 8πLµ(h)
dh
dt

+ W + πr2∆p

= πr2Lρ(h)
d2h
dt2

(6)

in which

Lρ(h) = ρlh + ρg (L − h), Lµ(h) = µlh + µg (L − h) (7)

W =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−

π

6
ρlr2

(
dh
dt

)2

when
dh
dt

≥ 0,

π

6
ρg r2

(
dh
dt

)2

when
dh
dt

< 0,

(8)

∆p =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρggL −

ρl − ρg

2

(
dh
dt

)2

−
7
6
ρlr

d2h
dt2

when
dh
dt

≥ 0,

ρggL −
ρl − ρg

2

(
dh
dt

)2

−
7
6
ρg r

d2h
dt2

when
dh
dt

< 0,

(9)

with L the length of the capillary tube, ρl and ρg the density
of liquid and gas, µl and µg the liquid and gaseous dynamic
viscosity, respectively. In addition, Maggi and Alonso-Marroquin
[15] proved the robustness of model (6) by comparing numerical
results with experimental data. Assuming that the contact angle
θ is constant and ρg = µg = 0, Eq. (6) reduces to

(h + ϖ1)
d2h
dt2

+ ϖ

(
dh
dt

)2

+
8µ
ρr2

h
dh
dt

−
2σ cos θ

ρr
+ gh

= 0, (10)

in which⎧⎪⎨⎪⎩
ϖ1 =

7
6
r, ϖ =

2
3

when
dh
dt

≥ 0,

ϖ1 = 0, ϖ =
1
2

when
dh
dt

< 0,
(11)

with ρ = ρl and µ = µl.
Researchers generally divide the process of liquid rising in

a vertical cylindrical tube into several stages [16,17]. h ∝ t2
is derived by neglecting viscous and gravity terms at the first
stage [16,18]. With viscous influence increases, the inertia dom-
inated flow gradually evolves into the viscous flow. Detailed
analysis of this transition can be found in the literature [16,17,19].
Subsequently, the effect of inertia vanishes and the flow becomes
purely viscous, h ∝

√
t is derived by neglecting both inertia and

gravity [9,10]. After that, the purely viscous flow enters into both
the viscous and gravitational time stage. Analytic solutions in this
stage (neglecting inertia) in implicit and explicit forms are given
by Washburn [10] and Fries and Dreyer [20], respectively. In the
end, the equilibrium height 2σ cos θ/(ρgr) where meniscus stops,
which is also called the Jurin height [21], is determined by the
balance of gravity and surface tension. It is worth mentioning that
some oscillatory cases were noticed in experiments [16,22,23].
It is shown that the oscillation of meniscus position is mainly
caused by kinetic force and it is the viscosity that mainly damps
the oscillatory energy out. For a defined liquid and capillary tube,
a critical value for capillary radius was suggested by Hamraoui
and Nylander [24] and Masoodi et al. [25], below which the
oscillation disappears. Besides, the imbibition dynamics depend
on the shape of the free surface as well [26]. A universal law
h ∝ t1/3 is found when liquid rises into corners of different
geometries [27] or into short pillars with rounded edges [28], but
dynamics follows h ∝

√
t when liquid rises into long pillars with

sharp edges [29]. Also, Siebold et al. [30] found that the contact
angle depends strongly on the rising velocity.

Various experiments have been done to observe the behav-
iors of capillary action and to confirm the validity of theories.
However, most of them, unfortunately, fail to cover the complete
process. Early experiments [8,10,31] were performed under nor-
mal gravity condition with small tube diameter but only the h ∝√
t behavior was observed. After that, Siegel [32] carried out free

fall experiments in a low-gravity (including zero-gravity) envi-
ronment with different tube diameters and successfully observed
the h ∝ t behavior. Subsequently, Dreyer et al. [18] performed
a drop tower experiment, which verifies their theory that the
capillary rise process is divided into three successive stages with
at the beginning h ∝ t2, then h ∝ t , and ultimately h ∝√
t . These three regions later were verified by Stange et al. [16]

who performed experiments under micro-gravity environment
by using a 4.7 s drop tower. Moreover, Stange et al. [16] gave
a detailed analysis of why many experiments could only observe
parts of behavior. Stange et al. [16] proposed that the three phases
of capillary rise process are separated by two characteristic time
scales t1 ∝

√
ρr3/σ and t2 ∝ r2/ν which are determined by

Ohnesorge number Oh =
√

ρν2/(σd) and the inertia of the liquid.
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To solve the established models as above, various numeri-
cal, such as the Runge–Kutta algorithm [17] and the Lattice-
Boltzmann method [33], and analytical approaches [20,24] have
been suggested and applied. Most commonly, numerical methods
are recognized in the international research community on its
availability and are accepted as the most convenient way of
solving complex physical problems. However, it is difficult for
researchers to draw physical intuition directly and to investigate
the influence of physical parameters on processes from numerical
solving steps, even though a numeric answer can be immediately
obtained. So, obtaining analytic solutions of a complex model is
still of meaning.

Up to now, various analytic solutions [20,24] have been pro-
posed by neglecting certain terms in different flow regimes. In ad-
dition, a double Dirichlet series h =

∑
∞

m=0
∑

∞

n=0 am,nexp[(mr1 +

nr2)t] was used by Brittin [11] and by Xiao et al. [14], respec-
tively, to solve the problem of capillary flows rising up mono-
tonically to the equilibrium height. However, series solutions for
the case of capillary flows fluctuating around the equilibrium
height have never been presented in previous literature, to the
best knowledge of authors.

In this paper, the HAM is employed to study the dynamics
of capillary flows in a vertical circular tube. Unlike perturba-
tion methods, the HAM is independent of small/large physical
parameters. Also, in the framework of the HAM, we have great
freedom to choose the solution expression, the auxiliary function,
the auxiliary linear operator and a so-called convergence control
parameter c0 which has no any physical meaning [34–40]. In
the past, something new has been gained by the HAM: (1) the
steady-state resonant waves were first predicted by the HAM in
theory [41,42] and then confirmed experimentally [43]; (2) the
solution of the steady-state resonant acoustic-gravity waves was
found for the first time by means of the HAM [44]; (3) accurate
results of the Stokes wave with maximum height in extremely
shallow water were obtained by the HAM for the first time [45].

Utilizing the HAM, convergent series solutions of the dynamics
of capillary flows are successfully obtained. In the case of capillary
flows oscillating around the equilibrium height, the obtained
series solution of the penetration distance of the meniscus has the
basis exp(mℜ[η1]τ ) cos(nℑ[η1]τ ) and exp(mℜ[η1]τ ) sin(nℑ[η1]τ );
but in the case of the capillary flow rising monotonically, the
series solution of the penetration distance of the meniscus can
have either basis exp(mη1τ ) or basis exp[(mη1+nη2)τ ] if η2/η1 ̸=

Z. Besides, it is found that the velocity of the capillary flow given
by the model [15] with assumptions of constant contact angle
and negligible air is larger than that of the experimental results.
It is worth mentioning that the contact angle depends on both
the speed and the direction of movement of the contact line [46].
The variation of the contact angle implies a friction force. Also,
expelling air out of capillary also results in additional dissipation
of energy; this effect is found to be significant especially for
low viscous liquid [6]. So the discrepancy between our solution
and experimental results should be caused by the neglect of the
two damping mechanisms, the dynamic contact angle and the
capillary length effect.

This paper is organized as follows. Following an introduc-
tion, the asymptotic property of the dynamics of capillary flows
is given in Section 2. Procedures of the HAM for the case of
capillary flows rising monotonically to the equilibrium height
are presented in Section 3. Procedures of the HAM for the case
of capillary flow oscillating around the equilibrium height are
given in Section 4. Results and discussions are given in Section 5.
Concluding remarks are given in Section 6.

2. Asymptotic property

Introducing two scaling factors H = 2σ cos θ/(ρgr) and
T =

√
H/g and non-dimensionalizing the penetration distance

of the meniscus z and the time t by z = h/H , τ = t/T .
Besides, defining the Bond number as Ω1 = 7ρgr2/(12σ cos θ )
and the ratio of Ohnesorge number to Bond number as Ω2 =

8
√
2µ2σ cos θ/(ρ3g2r5), then the Eq. (10) reduces to

N
[
z(τ )

]
= Ω

d2z
dτ 2 + z − 1 + z

d2z
dτ 2 + ϖ

(
dz
dτ

)2

+ Ω2 z
dz
dτ

= 0 (12)

subject to boundary conditions

z(0) = z ′(0) = 0 (13)

with definition

Ω =

⎧⎪⎨⎪⎩
Ω1 when

dz
dτ

≥ 0,

0 when
dz
dτ

< 0.
(14)

Introducing z(τ ) = 1 + εf (τ ) and substituting it into Eq. (12),
then comparing the coefficient of ε on both sides of the equation,
we gain (Ω + 1)d2f (τ )/dτ 2

+ Ω2df (τ )/dτ + f (τ ) = 0, whose
general solution is a linear combination of exp[η1τ ] and exp[η2τ ]

with η1 = (−Ω2 +

√
Ω2

2 − 4Ω − 4)/2(Ω + 1) and η2 = (−Ω2 −√
Ω2

2 − 4Ω − 4)/2(Ω + 1). If Ω2 ≥ 2
√

Ω1 + 1, η1 and η2 are
real for both rising and falling processes, hence the meniscus
rises monotonically to the equilibrium height. If 2

√
Ω1 + 1 >

Ω2 ≥ 2, η1 and η2 are real in the falling process but contain a
non-zero imaginary part in the rising process; thus, the meniscus
overshoots over the equilibrium height and then reduces to the
equilibrium height. If Ω2 < 2, the meniscus oscillates around the
equilibrium height because η1 and η2 contain non-zero imaginary
parts in both rising and falling processes.

Introducing u = exp[η1τ ] and w(u) = 1 − z(τ ), Eqs. (12) and
(13) become

N1

[
w(u)

]
= (Ω + 1)η2

1

(
u

dw
du

+ u2 d2w

du2

)
+ w −

(
Ω2 η1 + η2

1

)
u w

dw
du

+ Ω2 η1 u
dw
du

− η2
1 u2 w

d2w

du2

− ϖ η2
1

(
u

dw
du

)2

= 0 (15)

subject to boundary conditions

w(u)
⏐⏐⏐⏐
u=1

= 1,
dw(u)
du

⏐⏐⏐⏐
u=1

= 0, (16)

where N1 is a nonlinear operator.

3. The HAM approach for the meniscus motion with a mono-
tonic path

Here we present a HAM approach for the case of menis-
cus rising monotonically to the equilibrium height, i.e., Ω2 ≥

2
√

Ω1 + 1. Let γ0(u) denote the initial guess of w(u), L an auxil-
iary linear operator with the property L[0] = 0, H̃(u) a non-zero
auxiliary function, c0 a non-zero constant, called the convergence-
control parameter, and q ∈ [0, 1] the embedding quantity, respec-
tively. We construct following a family of differential equations
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(1 − q)L
[
Γ (u; q) − γ0(u)

]
= c0 q H̃(u) N1

[
Γ (u; q)

]
, (17)

subject to boundary conditions

Γ (u; q)
⏐⏐⏐⏐
u=1

= 1,
∂Γ (u; q)

∂u

⏐⏐⏐⏐
u=1

= 0, (18)

where the nonlinear operator N1 is defined by (15), the Γ (u; q)
corresponds to the unknown function w(u).

When q = 0, due to the property L[0] = 0, Eq. (17) reduces
to

Γ (u; 0) = γ0(u). (19)

When q = 1, Eq. (17) is equivalent to original equation (15),
provided

Γ (u; 1) = w(u). (20)

Therefore, when the embedding quantity q varies continuously
from 0 to 1, Γ (u; q) deforms from a given initial guess γ0(u) to
the unknown function w(u).

According to Eq. (19), Γ (u; q) can be expanded into following
Maclaurin series

Γ (u; q) =

+∞∑
m=0

γm(u) qm, (21)

where

γm(u) = Dm

[
Γ (u; q)

]
, (22)

in which

Dm
[
f
]

=
1
m!

∂mf
∂qm

⏐⏐⏐⏐
q=0

(23)

is called the mth-order homotopy-derivative of f . Assuming that
the auxiliary linear operator L, the auxiliary function H̃(u) and the
convergence-control parameter c0 are so properly selected that
the Maclaurin series (21) is convergent at q = 1, then according
to (20), we have the so-called homotopy-series solution

w(u) =

+∞∑
m=0

γm(u). (24)

Substituting (21) into the Eqs. (17), and then equating the
coefficients of qm (m ≥ 1), we have the mth-order deformation
equations

L
[
γm(u) − χmγm−1(u)

]
= c0 H̃(u) δm−1(u), (25)

subject to boundary conditions

γm(u)
⏐⏐⏐⏐
u=1

= 0,
dγm(u)
du

⏐⏐⏐⏐
u=1

= 0, (26)

in which

χm =

{
0 when m ≤ 1,
1 when m > 1 (27)

and
δm(u)

= Dm

{
N1

[
Γ (u; q)

]}
= (Ω + 1)η2

1

(
u

dγm

du
+ u2 d2γm

du2

)
+ γm + Ω2η1u

dγm

du

−

m∑
i=0

[(
Ω2η1 + η2

1

)
uγi

dγm−i

du
+ η2

1 u2 γi
d2γm−i

du2

+ ϖη2
1 u2 dγi

du
dγm−i

du

]
.

(28)

We choose

γ0(u) = 2u − u2 (29)

as the initial guess of w(u), which satisfies the boundary con-
ditions (18). Besides, we choose the auxiliary linear operator

L[f ] = u2 d2f
du2 − 2u

df
du

+ 2f (30)

with the property L[u] = L[u2
] = 0. The corresponding inverse

linear operator reads

L−1
[
um

]
=

um

(m − 1)(m − 2)
. (31)

It is found that the coefficient of u in δm(u) is zero, i.e., δm(u)
consists of um, m = 2, 3, 4, . . .. So we choose following auxiliary
function

H̃(u) = u. (32)

With the initial guess (29), the inverse linear operator (31) and
the auxiliary function (32), the solution γm(u) of the high-order
deformation equations (25) and (26) can be obtained step by step,
starting from m = 1, say,

γm(u) = χmγm−1(u) + c0L−1[H̃(u) δm−1(u)
]

+Λ
(m)
1 u + Λ

(m)
2 u2, (33)

in which Λ
(m)
1 and Λ

(m)
2 are constant coefficients which are deter-

mined by the boundary conditions (26). γm(u) can be expressed
by

γm(u) =

3m+2∑
i=1

a(m)
i ui, (34)

with the recursion formulas of a(m)
i

2:{
a(0)1 = 2, a(0)2 = −1,

a(m+1)
i = g (m+1)

i + χ3−iΛ
(m+1)
1 + (χ4−i − χ3−i)Λ

(m+1)
2 ,

(35)

where

g (m+1)
i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
χm+1a

(m)
i , i = 1, 2

χm+1χ3m+4−ia
(m)
i

+

c0
[
∆

(1,m+1)
i−1 − ∆

(2,m+1)
i−1

]
(i − 1)(i − 2)

, i > 2,

(36)

∆
(1,m+1)
i = χ3m+4−i

{
(Ω + 1)η2

1

[
b(m)
i + c(m)

i

]
+a(m)

i + Ω2 η1 b(m)
i

}
, (37)

∆
(2,m+1)
i =

m∑
n=0

[(
Ω2η1 + η2

1

)
d(n,m+1)
i + η2

1 e(n,m+1)
i

+ϖ η2
1 f (n,m+1)

i

]
, (38)

Λ
(m+1)
1 =

3m+5∑
i=1

(i− 2)g (m+1)
i , Λ

(m+1)
2 =

3m+5∑
i=1

(1− i)g (m+1)
i , (39)

in which

b(n)i = i a(n)i , c(n)i = (i − 1) b(n)i , (40)

2 Detailed derivation is given in Appendix A.
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d(n,m+1)
i =

min{3n+2,i−1}∑
j=max{1,i+3n−3m−2}

a(n)j b(m−n)
i−j , (41)

e(n,m+1)
i =

min{3n+2,i−1}∑
j=max{1,i+3n−3m−2}

a(n)j c(m−n)
i−j , (42)

f (n,m+1)
i =

min{3n+2,i−1}∑
j=max{1,i+3n−3m−2}

b(n)j b(m−n)
i−j . (43)

The Mth-order homotopy-approximation of w(u) reads

w̃M (u) =

M∑
m=0

γm(u). (44)

4. The HAM approach for the meniscus motion with an oscil-
latory path

In this section, we propose another HAM approach for the case
of meniscus oscillating around the equilibrium height, i.e., Ω2 <
2
√

Ω1 + 1. Let us consider the model (12) subjecting to following
boundary conditions

z(τ0) = ζ , z ′(τ0) = 0. (45)

With transformation u = exp[η1τ ] and w(u) = 1 − z(τ ),
the governing equation (12) becomes (15) and the boundary
conditions (45) become

w(u)
⏐⏐⏐⏐
u=exp[η1τ0]

= 1 − ζ ,
dw(u)
du

⏐⏐⏐⏐
u=exp[η1τ0]

= 0. (46)

Similar to Section 3, we construct a family of equations

(1 − q)L
[
Γ (u; q) − γ0(u)

]
= c0 q N1

[
Γ (u; q)

]
(47)

subject to boundary conditions

Γ (u; q)
⏐⏐⏐⏐
u=eη1τ0

= 1 − ζ ,
∂Γ (u; q)

∂u

⏐⏐⏐⏐
u=eη1τ0

= 0, (48)

where the nonlinear operator N1 is defined by (15).
When q = 0, Eq. (47) reduces to

Γ (u; 0) = γ0(u). (49)

When q = 1, Eq. (47) is equivalent to original equation (15),
provided

Γ (u; 1) = w(u). (50)

So Γ (u; q) deforms from initial guess γ0(u) to the unknown
function w(u) as q varies continuously from 0 to 1. Again, we
expand Γ (u; q) into Maclaurin series

Γ (u; q) =

+∞∑
m=0

γm(u) qm. (51)

If above Maclaurin series is convergent at q = 1, then the
homotopy-series solution reads

w(u) =

+∞∑
m=0

γm(u). (52)

Substituting Eq. (51) into Eqs. (47) and (48), we have the mth-
order deformation equations

L
[
γm(u) − χmγm−1(u)

]
= c0 δm−1(u), (53)

subject to boundary conditions

γm(u)
⏐⏐⏐⏐
u=eη1τ0

= 0,
dγm(u)
du

⏐⏐⏐⏐
u=eη1τ0

= 0, (54)

in which χm and δm(u) are defined by (27) and (28), respectively.
Motivated by the two time scales η1 and η2 obtained in Sec-

tion 2, we choose

γ0(u) =
1 − ζ

η1 − η2

[ η1

eη2τ0
uη2/η1 −

η2u
eη1τ0

]
(55)

as the initial guess of w(u), which satisfies the boundary condi-
tions (46). It is found that both the coefficients of u and uη2/η1 in
δm(u) are zero, i.e., δm(u) consists of um+nη2/η1 , m+n = 2, 3, 4, . . ..
So we choose the auxiliary linear operator

L[f ] = η2
1 u2 d2f

du2 − η1η2 u
df
du

+ η1η2f (56)

with the property L[u] = L[uη2/η1 ] = 0. The corresponding
inverse linear operator reads

L−1
[
um

]
=

um

η1(m − 1)(mη1 − η2)
. (57)

Using the initial guess (55) and the inverse linear operator
(57), the solution γm(u) of the high-order deformation equations
(53) and (54) can be obtained step by step, starting from m = 1,
say,

γm(u) = χmγm−1(u) + c0L−1[δm−1(u)
]
+ Λ

(m)
3 u

+Λ
(m)
4 uη2/η1 , (58)

in which Λ
(m)
3 and Λ

(m)
4 are constant coefficients which are deter-

mined by the boundary conditions (54). γm(u) can be expressed
by

γm(u) =

m+1∑
i=0

m+1−i∑
j=max{1−i,0}

a(m)
i,j ui+jη2/η1 (59)

with the recursion formula of a(m)
i,j

3:⎧⎪⎪⎪⎨⎪⎪⎪⎩
a(0)0,1 =

(1 − ζ )η1

(η1 − η2)eη2τ0
, a(0)1,0 =

(1 − ζ )η2

(η2 − η1)eη1τ0
,

a(m+1)
i,j = g (m+1)

i,j + (1 − χi)(1 − χj+1)Λ
(m+1)
1

+ (1 − χi+1)(1 − χj)Λ
(m+1)
2 ,

(60)

where

g (m+1)
i,j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

χm+1a
(m)
i,j , i + j = 1,

χm+1χm+3−i−ja
(m)
i,j

+

c0
[
∆

(1,m+1)
i,j − ∆

(2,m+1)
i,j

]
[
(i − 1)η1 + jη2

][
iη1 + (j − 1)η2

] , i + j > 1,

(61)

∆
(1,m+1)
i,j = χm+3−i−j

{
(Ω + 1)η2

1

[
b(m)
i,j + c(m)

i,j

]
+a(m)

i,j + Ω2 η1 b(m)
i,j

}
, (62)

∆
(2,m+1)
i,j =

m∑
n=0

[
(Ω2η1 + η2

1) d(n,m+1)
i,j + η2

1 e(n,m+1)
i,j

+ϖ η2
1 f (n,m+1)

i,j

]
, (63)

Λ
(m+1)
3 =

m+2∑
i=0

m+2−i∑
j=max{1−i,0}

g (m+1)
i,j

η2 − η1

[
iη1 + (j − 1)η2

]
, (64)

3 Detailed derivation is given in Appendix B.
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Fig. 2. Dimensionless penetration distance z and the velocity dz/dτ of the
meniscus versus dimensionless time τ . ρ = 1000 kg/m3 , µ = 0.001 Pa s,
σ = 0.072 N/m, g = 9.81 m/s2 , contact angle θ = 0, radius of capillary tube
r = 0.0316 cm. ◦, experimental results [47]; ——, homotopy-series solution of
the model (12); – – –, Lucas–Washburn solution z =

√
2τ/Ω2 [9,10]; – · –,

analytic solutions z = 1 + W[−exp(−1 − τ/Ω2)], in which W is Lambert W
function with property x = W(x)exp[W(x)], given by Fries and Dreyer [20]; - -
-, analytic solutions given by Xiao et al. [14].

Λ
(m+1)
4 =

m+2∑
i=0

m+2−i∑
j=max{1−i,0}

g (m+1)
i,j

η2 − η1

[
(1 − i)η1 − jη2

]
, (65)

in which

b(n)i,j = a(n)i,j

(
i + j

η2

η1

)
, c(n)i,j = b(n)i,j

(
i − 1 + j

η2

η1

)
, (66)

d(n,m+1)
i,j =

min{i,n+1,i+j−1}∑
p=max{0,1−j,i−m+n−1}

min{j,n+1−p,i+j−1−p}∑
r=max{0,1−p,i+j−m+n−1−p}

a(n)p,r

× b(m−n)
i−p,j−r , (67)

e(n,m+1)
i,j =

min{i,n+1,i+j−1}∑
p=max{0,1−j,i−m+n−1}

min{j,n+1−p,i+j−1−p}∑
r=max{0,1−p,i+j−m+n−1−p}

a(n)p,r

× c(m−n)
i−p,j−r , (68)

Fig. 3. Dimensionless penetration distance z of the meniscus versus dimension-
less time τ . ρ = 710 kg/m3 , µ = 0.0006 Pa s, σ = 0.0167 N/m, g = 9.81 m/s2 ,
contact angle θ = 0, radius of capillary tube r = 0.5 mm. ◦, experimental
results [6]; ——, homotopy-series solution of the model (12);.

f (n,m+1)
i,j =

min{i,n+1,i+j−1}∑
p=max{0,1−j,i−m+n−1}

min{j,n+1−p,i+j−1−p}∑
r=max{0,1−p,i+j−m+n−1−p}

b(n)p,r b(m−n)
i−p,j−r .

(69)

The Mth-order homotopy-approximation of w(u) reads

w̃M (u) =

M∑
m=0

γm(u). (70)

5. Results and discussions

We firstly validate the HAM approaches proposed in Sec-
tions 3 and 4. It is worth mentioning that we are free to select
an appropriate convergence control parameter c0, which has no
physical meaning, to obtain a convergent homotopy-series solu-
tion. According to our computation, approaching a negative c0 to
zero can effectively yield a convergent homotopy-series solution
but reduce the convergence rate. Series solutions are convergent
when using −(60Ω2+3)/[(5Ω +5)(10Ω2+1)] ≤ c0 < 0 for both
the HAM approaches proposed in Sections 3 and 4.4 However,
from the viewpoint of efficiency, c0 = −(60Ω2 + 3)/[(5Ω +

5)(10Ω2 + 1)] is suggested.
The comparisons of the homotopy-series solution of the model

(12) and several other analytic solutions [9,10,14] against the
experimental results are as shown in Fig. 2(a). The penetration
distance of the meniscus given by the model (12) is larger than
the experimental results. This discrepancy should be caused by
the two assumptions used in the paper: both the variation of
the contact angle θ and the gas effect are assumed to be neg-
ligible. In practice, the contact angle depends on the speed and
direction of movement of the contact line [46]. The contact angle
is found to reduce to virtually zero as the liquid rises to the
equilibrium position [46], so simplifying the dynamic contact
angle to a constant value θ = 0 exaggerates the surface tension
effect and hence overestimates the velocity of the meniscus, as
shown in Fig. 2 (a). Besides, the additional viscous drag due to

4 Numerous combinations for 0.0001 ≤ Ω1, Ω2 ≤ 100 are examined.
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Fig. 4. Homotopy-series solutions of the penetration distance z and the velocity dz/dτ in the case of Ω2 = 3.

Fig. 5. Homotopy-series solutions of the penetration distance z and the velocity dz/dτ in the case of Ω2 = 1.

the air being expelled from capillary by rising liquid is found to
be significant for low viscous liquid [6]. As shown in Fig. 2(a) and
(b), the analytic solution z = 1+W[−exp(−1− τ/Ω2)], in which
W is Lambert W function with property x = W(x)exp[W(x)],
gives similar results of the penetration distance of the meniscus
as our homotopy-series solution, although the velocity given
by the solution z = 1 + W[−exp(−1 − τ/Ω2)] is infinite
as τ → 0. Fig. 3 compares the homotopy-series solution of
the model (12) and the experimental results. Again, the damp-
ing rate described by the model (12) is less than the practical
situation.

It is worth mentioning that the inertial effect dominates the
capillary flow at the initial stage. Therefore, enlarging Ω1, which
is the Bond number that denotes the ratio of gravitational forces
to surface tension forces, while fixing Ω2, which is the ratio of
Ohnesorge number to Bond number, should reduce the accelera-
tion of the capillary flow at the initial stage. By contrast, fixing Ω1
but enlarging Ω2 should have little effect on the velocity of the
meniscus at the initial stage. These are demonstrated by Figs. 4–6.
In addition, as shown in Fig. 6, the amplitude decreases quickly
with enlarging Ω2, which illustrates that the viscous force indeed
becomes significant in the latter stage.

Here it should be mentioned that in the case of capillary flows
rising monotonically, ℑ[η1] = ℑ[η2] = 0, both the series solution
with the basis exp[mη1τ ], m ∈ Z+, proposed in Section 3, and
the series solution with the basis exp[(mη1 + nη2)τ ], proposed in

Section 4 are valid. In the case of capillary flows oscillating around
equilibrium height, ℑ[η1] = −ℑ[η2] ̸= 0, the series solution
proposed in Section 4 has the basis exp(mℜ[η1]τ ) cos(nℑ[η1]τ )
and exp(mℜ[η1]τ ) sin(nℑ[η1]τ ). The explicit series solution of
the oscillatory case, to the best knowledge of authors, is never
presented previously. At last, it is worth mentioning that there
is only the viscosity term, Ω2 z dz/dτ , in the model (12) that
damps the energy out. If a inviscid liquid, i.e., Ω2 = 0, is consid-
ered, the amplitude of the penetration distance of the meniscus
will remain unchanged as time, which is characterized by our
series solution that has basis cos(nℑ[η1]τ ) and sin(nℑ[η1]τ ), n ∈

Z. But if both the dynamic contact angle and the expulsion
of the air out of the capillary are taken into account, the en-
ergy should be gradually damped out, which is the practical
case.

6. Concluding remarks

In this paper, the homotopy analysis method is applied to
study the dynamics of capillary flows in a vertical circular tube.
The model (10), proposed by Maggi and Alonso-Marroquin [15],
is considered but based on the assumptions of the constant con-
tact angle and of the negligible gas. Two dimensionless param-
eters Ω1 = 7ρgr2/(12σ cos θ ), the Bond number, and Ω2 =

8
√
2µ2σ cos θ/(ρ3g2r5), the ratio of Ohnesorge number to Bond

number, are studied. When Ω2 < 2, the meniscus fluctuates
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Fig. 6. Homotopy-series solutions of the penetration distance z in the case of Ω1 = 0.02.

around the equilibrium height; when 2
√

Ω1 + 1 > Ω2 ≥ 2,
the capillary flow overshoots over the equilibrium height and
then reduces to the equilibrium height. Both these two oscillating
behavior can be described by the homotopy-series solution with
basis exp(mℜ[η1]τ ) cos(nℑ[η1]τ ) and exp(mℜ[η1]τ ) sin(nℑ[η1]τ ),

η1 = (−Ω2 +

√
Ω2

2 − 4Ω − 4)/2(Ω + 1), m ∈ Z+, n ∈ Z. When
Ω2 ≥ 2

√
Ω1 + 1, the capillary flow rises monotonically to the

equilibrium position. This behavior can be characterized by either
the homotopy-series solution with basis exp[mη1τ ], m ∈ Z+, or
the homotopy-series solution with basis exp[(mη1 + nη2)τ ].

The effects of the dimensionless parameters Ω1 and Ω2 on
the dynamics of capillary flows are also studied. The velocity of
the meniscus at the initial stage is only dependent on the Ω1,
but the Ω2 has significant effects on determining the damping
rate of amplitude, as shown in Figs. 4–6. So the capillary flow is
dominated by the inertial effect at the initial stage but the viscous
effect becomes significant in the latter stage, these results are
consistent with that of previous literature [16,17,19].

However, our computed penetration distance of the meniscus
is larger than that of the experimental results. This discrepancy
should be mainly caused by the two assumptions used in this
paper: (1) the contact angle remains constant; (2) the gas is
negligible. Hamraoui et al. [46] analyzed the dynamic contact
angle in detail and found that the dynamic contact angle de-
creases to virtually zero. Besides, Hamraoui et al. [46] proposed
that the significant variation of contact angle θ implies a friction
force, which can be expressed as F = σ [(cos θ0 − cos θ )] =

β(dz/dt)n, where β is a molecular parameter that can be de-
fined as a friction coefficient, θ0 is the equilibrium contact angle.
Moreover, Zhmud et al. [6] studied the capillary length effect and
found that taking the air into account would result in additional
dissipation of energy. The corresponding viscous drag can be
expressed as 8πµg (L − z)dz/dt , in which µg and L denote the
gas viscosity and the capillary length, respectively. Zhmud et al.
[6] also pointed out that the capillary effect can be significant
for low viscous liquids. To sum up, the two assumptions used
in this paper result in the neglect of two potential damping
mechanisms. Therefore, a more comprehensive model including
the dynamic contact angle and the capillary length effect needs
to be considered.
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Appendix A. The recursion formulas of a(m)
i in (35)

Here we derive the recursion formulas of a(m)
i in (35). Accord-

ing to (29) and (34), it is easy to gain a(0)1 = 2 and a(0)2 = −1.
Assuming that for any n ≤ m, γn(u) can be expressed as

γn(u) =

3n+2∑
i=1

a(n)i ui
=

3n+4∑
i=2

χ3n+4−i a
(n)
i ui

+ a(n)1 u, (A.1)

in which χn is defined by (27). Then for any n ≤ m, it holds⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u
dγn

du
=

3n+2∑
i=1

b(n)i ui
=

3n+4∑
i=2

χ3n+4−i b
(n)
i ui

+ b(n)1 u,

u2 d
2γn

du
=

3n+2∑
i=2

c(n)i ui
=

3n+4∑
i=2

χ3n+4−i c
(n)
i ui,

(A.2)

in which b(n)i and c(n)i are defined by (40).
Using (A.1) and (A.2), it is easy to derive

γn

(
u
dγm−n

du

)
=

[
3n+2∑
i=1

a(n)i ui

][
3m−3n+2∑

i=1

b(m−n)
i ui

]

=

3m+4∑
i=2

d(n,m+1)
i ui, (A.3)

where d(n,m+1)
i is defined by (41). Similarly, we have

γn

(
u2 d

2γm−n

du2

)
=

3m+4∑
i=2

e(n,m+1)
i ui, (A.4)

(
u
dγn

du

)(
u
dγm−n

du

)
=

3m+4∑
i=2

f (n,m+1)
i ui, (A.5)

where e(n,m+1)
i and f (n,m+1)

i are defined by (42) and (43) respec-
tively. Then according to (28) and (A.1)–(A.5), we gain

δm =

3m+4∑
i=2

[
∆

(1,m+1)
i − ∆

(2,m+1)
i

]
ui, (A.6)

where ∆
(1,m+1)
i and ∆

(2,m+1)
i are defined by (37) and (38).

Using (32), (31), (33), (A.1) and (A.6), we have

γm+1 = χm+1γm + c0L−1
[H̃(u) δm] + Λ

(m+1)
1 u + Λ

(m+1)
2 u2

=

[
3m+5∑
i=1

g (m+1)
i ui

]
+ Λ

(m+1)
1 u + Λ

(m+1)
2 u2,

(A.7)
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in which g (m+1)
i is defined by (36). Λ

(m+1)
1 and Λ

(m+1)
2 are deter-

mined by the boundary conditions (26). In addition, u and u2 can
also be expressed as

u =

3m+5∑
i=1

χ3−i ui, u2
=

3m+5∑
i=1

(χ4−i − χ3−i)ui. (A.8)

Substituting (A.8) into (A.7), we have

γm+1 =

3m+5∑
i=1

a(m+1)
i ui, (A.9)

in which a(m+1)
i is defined by (35).

Appendix B. The recursion formulas of a(m)
i,j in (60)

Here we derive the recursion formulas of a(m)
i,j in (60). Accord-

ing to (55) and (59), it is easy to gain a(0)0,1 = (1 − ζ )η1/(η1 −

η2)eη2τ0 and a(0)1,0 = (1 − ζ )η2/(η2 − η1)eη1τ0 . Assuming that for
any n ≤ m, γn(u) can be expressed as

γn(u) =

n+1∑
i=0

n+1−i∑
j=max{1−i,0}

a(n)i,j u
i+jη2/η1

=

n+2∑
i=0

n+2−i∑
j=max{1−i,0}

χn+3−i−j a
(n)
i,j u

i+jη2/η1 , (B.1)

where χn is defined by (27). Then for any n ≤ m, it holds⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
dγn

du
=

n+1∑
i=0

n+1−i∑
j=max{1−i,0}

b(n)i,j u
i+jη2/η1

=

n+2∑
i=0

n+2−i∑
j=max{1−i,0}

χn+3−i−j b
(n)
i,j u

i+jη2/η1 ,

u2 d
2γn

du
=

n+1∑
i=0

n+1−i∑
j=max{1−i,0}

c(n)i,j u
i+jη2/η1

=

n+2∑
i=0

n+2−i∑
j=max{1−i,0}

χn+3−i−j c
(n)
i,j u

i+jη2/η1 ,

(B.2)

in which b(n)i,j and c(n)i,j are defined by (40).
According to (B.1) and (B.2), we have

γn

(
u
dγm−n

du

)

=

⎛⎝n+1∑
p=0

n+1−p∑
r=max{1−p,0}

a(n)p,ru
p+rη2/η1

⎞⎠
×

⎛⎝m−n+1∑
s=0

m−n+1−s∑
t=max{1−s,0}

b(m−n)
s,t us+tη2/η1

⎞⎠
=

m+2∑
i=0

m+2−i∑
j=max{1−i,0}

d(n,m+1)
i,j ui+jη2/η1 ,

(B.3)

where d(n,m+1)
i,j is defined by (67). Similarly, we have

γn

(
u2 d

2γm−n

du2

)
=

m+2∑
i=0

m+2−i∑
j=max{1−i,0}

e(n,m+1)
i,j ui+jη2/η1 ,

(
u
dγn

du

)(
u
dγm−n

du

)
=

m+2∑
i=0

m+2−i∑
j=max{1−i,0}

f (n,m+1)
i,j ui+jη2/η1 ,

(B.4)

where e(n,m+1)
i,j and f (n,m+1)

i,j are defined by (68) and (69), respec-
tively. Then according to (28) and (B.1)–(B.4), we gain

δm =

m+2∑
i=0

m+2−i∑
j=max{1−i,0}

[
∆

(1,m+1)
i,j − ∆

(2,m+1)
i,j

]
ui+jη2/η1 , (B.5)

where ∆
(1,m+1)
i,j and ∆

(2,m+1)
i,j are defined by (62) and (63).

Using (57), (58), (B.1) and (B.5), we have

γm+1 = χm+1γm + c0L−1
[δm] + Λ

(m+1)
1 u + Λ

(m+1)
2 uη2/η1

=

⎛⎝m+2∑
i=0

m+2−i∑
j=max{1−i,0}

g (m+1)
i,j uiuj

c

⎞⎠ + Λ
(m+1)
1 u + Λ

(m+1)
2 uη2/η1 ,

(B.6)

in which g (m+1)
i,j is defined by (61). Λ

(m+1)
3 and Λ

(m+1)
4 are deter-

mined by boundary conditions (54). In addition, u and uc can be
expressed as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u =

m+2∑
i=0

m+2−i∑
j=max{1−i,0}

(
1 − χi

)(
1 − χj+1

)
ui+jη2/η1 ,

uη2/η1 =

m+2∑
i=0

m+2−i∑
j=max{1−i,0}

(
1 − χi+1

)(
1 − χj

)
ui+jη2/η1 .

(B.7)

Substituting (B.7) into (B.6), we have

γm+1 =

m+2∑
i=0

m+2−i∑
j=max{1−i,0}

a(m+1)
i,j ui+jη2/η1 , (B.8)

in which a(m+1)
i,j is defined by (60).
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