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The deformation patterns of elastic membranes under tension
is called wrinkling. Wrinkling, which is caused by capillary
surface tension, is called capillary wrinkling (Figure 1).

In recent years wrinkling patterns have drawn particular at-
tention [1-11], since it can be an useful tool to infer material
parameters that might otherwise be inaccessible. For exam-
ple, the commonly observed tearing instability of an elastic
sheet, adhered to a rigid substrate, can be used to character-
ize the adhesion energy. The capillary-driven wrinkle forma-
tion can also be used as the basis for a metrology of both the
elastic modulus and the thickness of ultrathin films as well as
for the study of dynamical relaxation phenomena in ultrathin
films [5].

There has also been considerable interest in understanding
fundamental aspects of elasto-capillarity [9, 10] and capillary
wrinkling, including wrinkling of a compressed elastic film
on a viscous layer [1], wrinkling mechanics and the geome-
try of an elastic sheet under tension [2,3], the size and number
of wrinkles [5], the analytic analysis of capillary wrinkling of
the circular elastic membranes [6], wrinkling of pressurized
elastic shells [7], and capillary buckling of slender rods [11].

Regarding the capillary wrinkling of thin film, a milestone
has been laid by Huang et al. [5] and Vella et al. [6]. Huang et
al. [5] obtained the expression of capillary wrinkling length
¢ and numbers N by curve-fitting from experimental data,
while Vella et al. [6] theoretically proved the capillary wrin-
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Figure 1 (Color online) (a) Typical wrinkling of elastic film; (b) typical
capillary wrinkling of elastic film. The problem is to find the deformation
wrinkling pattern pair (N, £), where the wrinkling number is N and the wrin-
kling length is ¢.

kling length expression obtained by Huang et al. [5] for a
small deformation of a circular film. A novel experiment,
combining both fundamental and applied aspects of the inter-
action between surface tension and elasticity, was presented
by Huang et al. [5]. In their experiment, a small liquid drop
was placed onto an elastic membrane that floated in a bath
of the same liquid. Before adding the drop, the membrane
was stretched by the surface tension of the liquid bath. Once
the drop was added, owing to the opposing tension, the con-
tact line of the drop caused radial wrinkles. Experimentally,

1/2
it was found that the wrinkling length £ = 0.031r(%) ,

where r is the radius of the drop and 7 is the surface tension
coefficient of the liquid-gas interface. This pure empirical
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relationship is confirmed by a theoretical justification of Vella
et al. [6], who used the Foppl-von Karman thin plate the-
ory, however, the wrinkling number N expression proposed
by Huang et al. [5] has not been theoretically verified yet.

Although Huang et al. [5] successfully obtained the for-
mula for the pair (N, £) by curve-fitting, some questions are
still to be answered: are these relationships universally ap-
plicable? If not, then under what circumstances can it be
approximately valid? How can we promote those to other
materials such as axisymmetric anisotropic materials without
doing further experiments? How can we extend the pair (V, ¢)
to capillary wrinkling dynamics? If the characteristic scale of
the drop is greater than the capillary scale k™!, gravity begins
to dominate the wrinkling process, so what is the scale laws
beyond the capillary scale «™'?

The paper first introduce the research topic before present-
ing the general expression of the pair (&, £) by using dimen-
sional analysis and determining the controlling parameters
of the problem, while proposing linear approximated scal-
ing laws for the pair based on the understanding of the test’s
data, and then extending to the film made of composite mate-
rials. For the spreading of a liquid drop, capillary wrinkling
dynamics scaling laws are proposed based on Tanner’s law.
Finally, the paper concludes with a formulation of wrinkling
scaling laws in the gravity regime.

Generally speaking, both the wrinkling number N and
length ¢ are functions of the Young modulus E, Poisson ratio
v, film thickness £, radius of liquid drop r and surface tension
v, namely, N = F(E, h,v,y,r) and £ = G(E, h,v,7v,r), where
the F and G are unknown functions. The dimensions of those
parameters are listed in Table 1.

Since the film will be in a bending and stretching state with
a liquid drop, by dimensional analysis [12-16], the above
formula can be further expressed into the following forms:
N = F(D,K,v,r) and £ = G(D,K,y,r), where the bend-
ing stiffness D = Eh?/[12(1 — v*)] and the in-plane stiffness
K = Eh/(1-v?*). They can further be expressed in dimension-
less format by suing the the Buckingham 7t theorem [12-16],
as follows:

N =F(r\/%, \/g) (1)
LB \/g). o

These are the general relations for capillary wrinkling of the
floating thin film with a liquid drop. However, both functions

Table 1 Parameters and dimensions
N 4 h E v b% r
1 L L L~IMT2 1 MT2 L
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F and G were not able to be finalized only by the dimensional
analysis, therefore other methods such as experimental and
numerical ones must be used. Although we still do not know
the functions F, G, these relations in eqs. (1) and (2) can still
give us an important information, namely, they reveal that
the pair (N, £) are controlled by two combined dimensionless

parameters, namely r \/% and \/g , instead of the individual
parameters.

Regarding the capillary wrinkling of elastic film, Huang et
al. [5] conducted a good test. From their test data we found

that the wrinkling number N mainly depends on r \/% ; how-
ever, the wrinkling length ¢ mainly depends on the in-plane

stiffness \/g . Therefore, if we ignore the interaction between
bending and stretching, then eqgs. (1) and (2) can be simpli-

fied as follows:

N =F(r \/%) 3)

¢ =G( 5) “)
r Y

Theoretically, these are the relations that we can obtain by
dimensional analysis for small/moderate deformation. Gen-
erally speaking, the functions F and G might not be in power
forms, which means that capillary wrinkling phenomena has
no power laws and/or scaling laws. Nevertheless, these re-
lations can still provide some useful information such as the

fact that dimensionless parameter r \/% is a control parame-
ter for the wrinkling number N; while the parameter K/y will
be a control parameter for the wrinkling length ¢.

For a small/moderate deformation, eqs. (3) and (4) could
be approximately expressed in power laws of the controlling

parameters as shown below:

vl 2| 5

< f
—] , (6)
Y

¢
2 ~C,
.

where [Y] represents the integer part of real number Y, while
the constants Cy, C¢ and exponents «, can be determined
by either numerical simulations or experiments.

For a small deformation, by curve-fitting using the ex-
perimental data of Huang et al. [5], which produces C, =
0.033, Cy = 3.62 and @ = 1/2, B = 1. Hence, the wrinkling
length is finally as follows:

1/2
‘. 0.033(%) , %
p

and the wrinkling number N:

ool
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It is worth pointing out that eqs. (7) and (8) are universal and
are valid for all thin flat film that have a small deformation.
In recognition of the pioneer contribution tot he problem, we
suggest to call eqs. (7) and (8) as Huang’s scaling laws of
capillary wrinkling eqs. (7) and (8).

The Huang scaling laws can be used to facilitate measure-
ments of the bending stiffness and in-plane stiffness K. If you
can firstly get the N, € and radius r, hence, we can calibrate
the D and K as follows D = (38)*yr? and K = 918.27y(%)?

and the film thickness h = (/122 = 1.498N-2¢-1 2.

With the help of egs. (3) and (4), the above scaling laws
of N and ¢ can be extended to the film made of compos-
ites materials by simply replacing D and K with a corre-
sponding equivalent or effective bending stiffness D.g and

12
in-plane stiffness K.g; hence, N = [3.62 (r ,/ﬁ) ] and

1/2
{ _ Kegt ; ;
L= 0.033(7) . These expressions provide a pretty accu-
rate estimation for those materials without further investiga-
tion. For example, if the thin film is made of axial symmetric

orthogonal materials, D.g = D, and K.g = K,, we have the
2

3.62(r¥iD;)" ] and £ = 0.033(K,/)"2, with

the equivalent/effective bending stiffness D, = E,.h*/[12(1 —

v,vg)] and the equivalent/effective in-plane stiffness K, =

E,h/(1 —v,vy), radius r, the Young modulus E, and the Pois-
son ratio v,, and the circle Poisson ratio vy.

pair N =

Regarding dynamical capillary wrinkling, only Huang et
al. [5] has studied the problem and proposed a scale law of
capillary length as L(r) ~ e " by curve-fitting. In the fol-
lowing discussion, we will propose a different scaling law on
the capillary wrinkling dynamics.

A drop on a film surface, within a complete wetting regime
will slowly spread. Typically, the spreading lasts from a few
hours for ordinary liquids, to several weeks for highly viscous
fluids such as heavy silicone oils Figure 2.

This dynamic process can be expressed in terms of a con-
tact angle 6p, which depends on the spreading time . When
surfaces are smooth and clean, and for non-volatile liquids,

Drop
Precursor
—+ —+

Figure 2  (Color online) Spreading of a drop on a film surface in a to-

tal wetting regime. Tanner’s law: 6p ~ ~>/1°. In this paper, we obtained
-3/5
r~t .
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Tanner [17] obtained a remarkable universal law 6p ~ =310,

The measurements reveal a highly surprising fact, namely
that the angle 6p is completely independent of the spread-
ing parameter S = yso — ysL — ¥ as long as S is positive,
that is to say, as long as we are in a total wetting regime,
where yso is the surface tensions at the solid/air, ysp is the
solid/liquid surface tension, and vy is the liquid/air tension,
respectively. This is surprising because the force F that acts
on the system of interest is essentially equal to spreading pa-
rameter F' = yso — ysL — ycosfp = yso —ysL — Y = S.
There are two wetting regimes for sessile drops. Partial wet-
ting (S < 0): The drop does not spread, but instead forms
a spherical cap at equilibrium, resting on the substrate with
a contact angle 6p. A liquid is said to be “mostly wetting”
when 0p < 71/2, and “mostly non-wetting” when 6p > 71/2.
Total wetting (S > 0) : if the parameter S is positive, the lig-
uid spreads completely in order to lower its surface (6p = 0).
The Young’s law: y cos p = yso—7ysL, and S = y(cos6p—1).

The precursor film is evidence of the great force F that acts
on its boundary. The liquid is rapidly drawn towards the pe-
riphery in the form of a film whose thickness is roughly a pan-
cake’s thickness and, which is defined as e = 2« sin(6p/2)
as shown in Figure 3.

But, behind the film the forces that are involved are quite
different. Within the drop are forces of traction —ysp —
v cos Op, whereas within the film (characterized by a zero an-
gle) there are proper forces ysp. + y. The net force that acts
on the drop is then only F = y(1 — cosép) = %792, ve-
locity V = (V*/61)63, where the dimensionless coefficient
15 <1 <20, V* = y/n, and viscosity 1. From conserva-
tion of the volume Q = (7t/4)R3*6p of the drop, it is easy
to obtain the angle fp ~ (Q'/3/V*)¥19¢73/10 and the radius
R(1) = Q3(v* /Q1/3)1/1041/10

Therefore, the radius of the drop is given by
Q13 )3/5 s

r(t) = etanbp ~ K’IH% = K’l(? 0, ©))

Y

Y
Y

(b)

Figure 3  (Color online) (a) Liquid drops of increasing size on a sheet
of film. Gravity causes the largest drops to flatten. (b) Equilibrium of the
forces (per unit length of the line of contact) act on the edge of a puddle.
P = (1/2)pge* = —S is the hydrostatic pressure. The equilibrium of forces
that act on the line of contact, y(1 —cosfp) = (1/ 2)pge2, gives the thickness
e = 2k~ ! sin(dp /2), where the capillary length, k™! = +/y/(pg).
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Substituting this into eqs. (7) and (8), the wrinkling length
is given by
Q1/31\3/5
TI . ) t_3/5’
Y

KA\12

£ = 0.033(—) K_l( (10)
Y

which can be considered a first order approximation of Huang

et al. [5]. The wrinkling number is given by

N = [3.62(%)1/4 Vi | (%1/3)3/1();—3/ 10] . (11

They are illustrated in Figure 4. It must be pointed out
that both £(r) and N(¢) have singularity that stems from the
Turner’s law at + = 0. In order to keep in line with Huang
et al. [5], the Turner’s law may have to be modified to 6p =
O.exp(—t'/*), where 6, = 1 + S/y. Hence, the radius r(f) =

1/2
k1 @2exp(~2'14), the wrinkling length £(7) = 0.033(5) (1)

and wrinkling number N(f) = [3.62(%)1/ 4 W] Those ex-
ponential singularity-free laws are needed to be confirmed in
the future.

From egs. (10) and (11), it is interesting to note that both
{(t) and N(r) fade away with spreading time, and will stop at
critical time #. = Q'3/V* = nQ'3/y. Beyond the critical
time, the spreading enters the gravity regime. It is important
to bear in mind that this equation applies only when r is less
than the capillary length ! = +/y/(og) . When r > «7!,
gravity must be taken into account [18]. The length x~! is
generally of the order of a few mm. If one wants to increase
the length 7!, it is necessary to work in a microgravity envi-
ronment or, more simply, to replace air with a non-miscible
liquid whose density is similar to that of the original liquid
[18].

Gravity is negligible for sizes r < x~'. When this condition
is met, it is as though the liquid is in a zero-gravity environ-
ment and capillary effects dominate. The opposite case, when
r> k!, is referred to as the “gravity” regime. In the critical
situation r = x~! and beyond, the scaling laws eq. (12) of the
wrinkling length ¢ will be independent of the surface tension

027 1 87 (b)

0.1

.
61 \-
\-\ —=— Number dynamics
I
)

—sa—Wrinkling length dynamics 'z

N— .

0.0

T T T T T T T T T T 1 1 T T T T T T
01 2 3 4 5 6 7 8 9 10 0 2 4 6 8 10
t t

Figure 4
%

N/ [(%)1/4 \/;(Tl(ﬁf/w].

(Color online) (a) Capillary wrinkling length dynamics £* =

12 13\3/5
(%) K‘l(g‘,—*) ]; (b) capillary wrinkling number dynamics N* =
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v as follows:

12
‘= o.osz(pfg) : (12)

and the wrinkling number N, given by

N = [ 3.62y
VgD |’

It is clear that both N and ¢ are constant within the gravity
regime.

In summary, this study used dimensional analysis to de-
fine the general expression of the pair (N, {), which reveals
that there are no universal scaling laws for capillary wrin-

13)

kling. Only in the case of small and moderate deformation,
special universal scaling laws can be formulated. Regarding
the bending and in-plane stiffness, it was found that the wrin-
kling number N is mainly controlled by the ratio of bending
stiffness and surface tension, and the wrinkling length ¢ is
controlled by the ratio of in-plane stiffness and surface ten-
sion. As a natural extension, we gave the pair (N, €) of a thin
film made of axisymmetric anisotropic materials. By using
Tanner’s scaling laws, we obtained dynamical scaling laws
for the pair (N, £), which show that the pair (N, £) will fade
away with the time. Finally, the pair (N, ) was also obtained
within the gravity regime.

The author wishes to thank Michael Sun of South African College Junior
School, Cape Town, for taking the picture in Figure 1.
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