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A B S T R A C T

This article attempts to clarify an issue regarding the proper definition of plastic dislocation density tensor. This
study shows that the Ortiz’s and Berdichevsky’s plastic dislocation density tensors are equivalent with each
other, but not with Kondo’s one. To fix the problem, we propose a modified version of Kondo’s plastic dislocation
density tensor.

Plastic deformation is everywhere, from bending a fork to panel
beating a car body. It is a subject that pervades so many aspects of
peoples’ daily lives.

Taylor [1] realized that plastic deformation could be explained in terms
of the theory of dislocations, even since this view has become a consensus
that mechanism of plastic deformation is the result of dislocation accumu-
lation [1–19,22–24]. Accordingly, some plastic dislocation density tensors
have been proposed [2–8]. However, they are totally different from each
other and no any consensus in terms of definition of the plastic dislocation
density tensor has been reached. The majority of past and contemporary
authors following the original idea of Kondo [2,5,6] and Bilby et al. [4],
adopted the following definition of the resultant Burgers vector

=b F e
cKondo = ×F x F F Ad d· ( )·e e e1 1 , where c is any close con-

tour in the current configuration. Ortiz and Repetto [7] defined the
resultant Burgers vector in a completely different way =bOrtiz

= × =F x F A T Ad d d· · ·c
p p

Ortiz . Reina et al. [11–14] did a
comprehensive and in depth studies on the Ortiz’s definition

= ×T F p
Ortiz . Berdichevsky [8] introduced a measure of the
resultant closure failure leading to the dislocation density tensor

= ×T F F·( )p p
Berdichevsky

1 . Le et al. [15–19] recommended to use the
Berdichevsky’s definition.

It is clear that unification of the definition for plastic dislocation
density tensor is still an open issue. which is the proper definition?
What is the relationship between those definitions? If the definition is
not well defined, how to fix it?.

Phenomenologically the total elasto-plastic deformation gradient
= = =F g G g G g GF Fi

i
ij

i j
ij

i j can be decomposed into the mul-
tiplication of elastic gradient namely =F F F·e p, is due to Bilby et al
[3], Kröner [6], Lee and Liu [20], and Lee [21]. The elastic deformation
gradient = = =F g e g e g eF Fe

i
i

ij
e i j

ij
e i j and plastic gradient

= = =F e G e G e G G e gF F , , where ,p
i

i
ij
p i j

ij
p i j

i i i are the base vec-
tors corresponding to the reference, intermediate and current config-
uration, respectively. The deformation decomposition is shown in
Fig. 1.

It should be noted that the elastic deformation F e and plastic de-
formation F p cannot be gradients of global maps, they are therefore
called incompatible, namely ×F 0e and ×F 0p as well,
where the operator = Gk

k is gradient operator, and k is covariant
derivative defined in reference configuration. Nevertheless, both F e and
F p are orientation preserving so that = >FJ det( ) 0p

p and
= >FJ det( ) 0e

e . This means, F p and F e have inverse deformations,
denoted correspondingly by F( )p 1 and F( )e 1.

In this short article, we will show that the Ortiz’s and Berdichevsky’s
plastic dislocation density tensor are equivalent, while not equivalent
with Kondo’s one. To fix Kondo’s problem, we can change Kondo’s
definition to following form

=

= ×
=

b F x

F A
T A

d

d
d

· ·

( )·
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e

e

Modified Kondo
1

1

Modified Kondo (1)

Thus, we have modified Kondo’s plastic dislocation density tensor as
follows

= ×T F .e
Modified Kondo

1 (2)

With this modified definition, later we will show that the modified
Kondo’s definition can be equivalent with both Ortiz’s and
Berdichevsky’s plastic dislocation density tensor. To verify these, we
need to prove a tensor identity at first.

Lemma 1. Giving two 2nd order tensors = =A g e g eAi
i

ij
i j
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where the unit tensor = =I G G G Gm
m

ij
i j in reference configuration.

Therefore, we have proven the tensor identity, which has never been
seen in literature.

Despite the incompatibility of elastic and plastic deformation,
namely, F e and F p, the total deformation F is compatible, it means that
the total deformation must be gradient of global maps, thus it must
satisfy compatible condition [23], namely, the incompatible tensor

= × =F FInc 0( ) , which leads to = × =F F FInc 0( ) ( · )e p .
Applying the identity of tensor proved in the Lemma, we have

= × = × = × + × =F F F F F F F FInc 0( ) ( · ) ·( ) ( )· .e p e p e p (5)

Using the previous definitions of plastic dislocation density tensor, the
above expression can be rewritten as

= +
= +
=

F F T T F
F T T F

Inc

0

( ) ·( ) ( )·
·( ) ( )·
.

e p

p
Oritz Modified–Kondo

Berdichevsky Modified–Kondo
(6)

Therefore, we have their relationships:

+ =F T T F 0· · ,e p
Oritz Modified–Kondo (7)

+ =F T T F 0· · ,p
Berdichevsky Modified–Kondo (8)

=F T F T 0· · .e
Berdichevsky Oritz (9)

Clearly the relations (7)–(9) reveal that three definition of the plastic
dislocation tensity tensor are equivalent.

In summary, this study shows that both Ortiz’s and Berdichevsky’s
plastic dislocation density tensors are equivalent, and are proper defi-
nition. Although Kondo’s definition is not proper one, it can be fixed by
the modified version in Eq. (2).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, athttps://doi.org/10.1016/j.rinp.2018.12.045.
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Fig. 1. Elasto-plastic deformation configuration: elastic deformation F e, plastic
deformation Fp and total deformation F.
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