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One of the central and most vivid problems of celestial me-
chanics in the 18th and 19th centuries was the motion de-
scription of the Sun-Earth-Moon system under the Newto-
nian gravitation field (Figure 1(a)). Notable work was done
by Euler (1760), Lagrange (1776), Laplace (1799), Hamilton
(1834), Liouville (1836), Jacobi (1843), and Poincaré (1889)
[1] and Xia (1992) [2]. The study of the motion between the
two bodies was solved by Kepler (1609) and Newton (1687)
early in the 17th century. For the elliptic periodic orbit of 2-
body system, Kepler’s third law of the two-body system [3] is
given by T |E|3/2 = π√

2
Gm1m2

√
m1m2

m1+m2
, where the gravitation

constant, G = 6.673 × 10−11m3 kg−1 s−2, the orbit period, T ,
the total energy of the 2-body system, |E|, and point masses
m1 and m2 (Figure 1(b)).

However, the 3-body system (Figure 1(c)) cannot be
solved analytically because unlike the 2-body problem, the
18 variables that describe the system cannot be reduced to a
single variable. Simplification of the two-body problem was
allowed by invariance and conserved quantities as “first inte-
grals”. It was proven impossible to reduce the 18 variables of
the 3-body problem in order to produce an analytic solution.

Notwithstanding that the analytic solution cannot be
found, it is possible to find a numerical solution for the 3-
body problem, in which the study of the periodic 3-body orbit
has received particular attention in recent years [4-11]. The
figure-eight orbit was discovered numerically in 1993, using
the principle of the least action by Moore [4]. Chenciner and

*Corresponding author (email: sunb@cput.ac.za)

Montgomery [5] rediscovered the solution by using the shape
space least action principle in 2000. In 2013 Šuvakov and
Dmitrašinović [6] made a breakthrough and produced epic
results, they found 13 new distinct collisionless periodic or-
bits of the Newtonian planar 3-body system with an equal
mass and zero angular momentum. In 2017 Li and Liao [10],
Li et al. [11] reported their breakthrough new finding: 695
periodic orbits of planar 3-body system with an equal mass
and zero angular momentum, as well as 1223 periodic orbits
of the planar 3-body problem with an unequal mass and zero
angular momentum, respectively.

Corresponding to the new finding of more and more pe-
riodic obits, a fundamental conjecture was proposed by nu-
merical experiments [9-11], which states that the 3-body sys-
tem (m1, m2, m3) may obey a law, which is similar to the
law of harmonies, named Kepler’s third law. Analogous to

(a)

(b) (c) (d)
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Figure 1 (Color online) (a) The Sun-Earth-Moon system; (b) 2-body sys-
tem; (c) 3-body system; (d) n-body system.
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the Kepler’s third law of the two-body problem, Šuvakov and
Dmitrašinović [9] proposed a generalized 3-body Kepler’s
third law: T |E|3/2 = constant, where |E| denotes the total
kinetic and potential energy of the 3-body system, where T is
the period of periodic orbit. However, they pointed out that
“the constant on the right-hand-side of this equation is not
‘universal’ in the 3-body case, as it is in the two-body case,
and it may depend on both the family of the 3-body orbit
and its angular momentum” [9]. Li and Liao [10] enhanced
the aforementioned relation to T̄ |E|3/2 = T̄ ∗, and numerically
proved that T̄ ∗ is approximately a universal constant, namely
T̄ ∗ = 2.433 ± 0.075, for the 3-body system with an equal
mass and zero angular momentum. This remarkable scale-
invariance period T̄ ∗ = T̄ |E|3/2 was again proved by Li et al.
[11, 12] for the 3-body system with unequal mass and zero
angular momentum, where T̄ ∗ = 3.074m3 − 0.617 in the case
of m1 = m2 = 1 and m3 varied.

Although the aforementioned relations [9-11] were sup-
ported by the numerical experiments in ref. [9-11]. The ques-
tions still remain whether T |E|3/2 = constant is universal, and
if not, what form it will take and how to formulate it without
a further numerical simulation. Would we be able to find sim-
ilar relations or universal scaling laws, for an n-body system,
and, if so, how?

The 2-body system incorporates Kepler’s three laws,
namely the law of ellipses, the law of equal areas and the
law of harmonies. Clearly, for the 3-body system, since the
periodic orbit is no longer elliptical, so that there is no cor-
responding law of ellipses, and because the periodic orbital
topology is more complex, the law of equal areas might also
not be established. From a large number of numerical simu-
lations of the 3-body system, the time of each object walking
along its orbit is the same, that is, for a given mass of the 3-
body system, the periodicity of the periodic orbit in the gravi-
tational field might satisfy Kepler’s third law, namely the law
of harmonies.

The question now is whether or not the conclusions drawn
from those limited numerical experiments are prevalent in
the 3-body system. If so, can it possibly be extended to an
n-body system? Clearly, with an increase in the number of
point mass, the system will have more and more degrees of
freedom; while accordingly, the dynamic process becomes
hugely complex. If you continue to use numerical simulation
to study the n-body problem, the calculation will certainly be-
come more and more challenging. Hence, we have no choice
but to find an alternative approach.

This study has attempted to attack the n-body system (in-
cluding 3-body) by using dimensional analysis [13-17]. The
most powerful use of dimensional analysis is to predict the
outcome of an numerical experiment, depending on the vari-
ables, whilst providing theoretical insight. Dimensional anal-
ysis may come across as simply trying to fit pieces of a puzzle

together by trial and error. However, identifying the quanti-
ties that are relevant for a given problem is a demanding task,
which requires deep physical insight [16].

An important class of central gravitation fields is formed
by those in which the potential energy is inversely propor-
tional to the radius r, and the force accordingly inversely pro-
portional to r2. They include the fields of Newtonian gravita-
tional and of Coulomb electrostatic interaction; the latter may
be either attraction or repulsive. For the attractive gravitation
field, the potential energy is U(r) = −α/r, where α = Gm1m2

is a positive constant with dimension L3MT [3].
Let us have an n-body system with n point masses, de-

noted by mk (k = 1, · · · , n) (Figure 1(d)), where each mass
does periodic orbital motion in the Newtonian gravitational
field, whose gravitational constant is G. Assuming that each
point mass has no angular rotation and no collision with each
other. The question becomes how to extract the basic param-
eters of the problem from these limited information, and what
are the basic parameters for an n-body system?

In physics, these basic parameters should include the grav-
itational field, the characteristic area or length scale of the
periodic orbit, as well as the characteristic mass of the sys-
tem. It is clear that we can use the gravitational constant G
to describe the Newtonian gravitational field; the characteris-
tic mass can be a reduced mass µn. Each cycle of the track
is different, and not like the elliptical orbit of the semi-long
axis, which is the characteristic scale. The periodic orbit has
a common topological feature, which is that all periodic or-
bit are closed, hence the area An of the closed orbit could be
chosen as the characteristic area scale of the orbit. Its square
root is the length scale. Now the periodic orbit problem of
an n-body system is to find the orbital period, Tn, and total
energy, |En|, which is the summation of kinetic and potential
energy. Here it takes its abstract value since it is negative
for periodic orbit. From Newtonian gravitation theory, the at-
traction forces between bodies are linear proportional to the
product of Gmim j. This means that the gravitation constant
G can be absorbed into a new parameter αn, whose dimen-
sion is L3MT−2. In the following, we will use α instead of G
as basic parameter. The dimensions of those parameters are
listed in the Table 1.

According to the dimensional analysis [13-15], the total
energy |En| can be expressed as:

|En| = f (αn, µn, An), (1)

where f stands for a function. This relation has four param-
eters with three basic dimensions, namely time T , mass M

Table 1 Parameters and dimensions

αn µn An Tn |En |
L3 MT−2 M L2 T ML2T−2
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and length L. From Buckingham π-theorem [13-15], it can
produce only one dimensionless parameter, π = |En|αa

nµ
b
nAc

n,
the homogenous dimension theorem gives us a = −1, b =
0, c = 1/2, hence π = |En|A1/2

n /αn, which must be a constant
since it is one only. Therefore, we have

|En|A1/2
n (αn)−1 = const. (2)

In a similar way, the orbital period Tn can be expressed as
Tn = F(αn,Mn, A), where F stands for a function. This
relationship has four variables with three basic dimensions,
namely time T , mass M and length L. It can produce only
one dimensionless parameter, π = TnA−3/4α1/2

n µ
−1/2
n , which

must also be a constant. Therefore n-body Kepler’s third law
is given by

TnA−3/4
n α1/2

n µ
−1/2
n = const. (3)

Combining the eqs. (2) and (3) and removing the area An,
we can obtain a popular format of the Kepler’s third law as
follows:

Tn|En|3/2 = const. × αn
√
µn. (4)

It is noted that the period depends on the energy of the mass.
The higher energy the system has, the shorter period it has.
For each energy level, there is a corresponding period, there-
fore infinite periodic orbits exist [10, 11].

Although eq. (4) has been formulated, we still cannot get
much useful information if the constant, αn and µn cannot be
defined. In other words, the success and failure of eq. (4)
totally depends on determination of these three parameters.
The current situation is even more difficult since the only an-
alytic information is the 2-body Kepler’s third law. Let us
embark on our journey from Kepler’s third law.

Since dimensional result eq. (4) is a general result and
should also be true for 2-body system, we can determine the
constant by this understanding. In eq. (4), if we can set the re-
duced mass µ2 =

m1m2
m1+m2

and parameter α2 = Gm1m2, by com-

paring with Kepler’s third law T |E|3/2 = π√
2
G

[
(m1m2)3

m1+m2

]1/2
,

then we can propose that const.= π√
2
.

If we carry on this process and will face a big challenge,
that is how to extend the 2-body Kepler’s third law to an
n-body system? From Newtonian gravitation theory, for 2-
body system (m1,m2), the attraction forces in between are
proportional to the linear combination of m1m2; for 3-body
system (m1,m2,m3), the attraction forces between bodies are
proportional to the linear combination of m1m2, m1m3 and
m2m3; and for 4-body system (m1,m2,m3,m4), the attraction
forces between bodies are proportional to the linear combi-
nation of m1m2, m1m3, m1m4, m2m3, m2m4, and m3m4; and
for 5-body system (m1,m2,m3,m4,m5), the attraction forces
between bodies are proportional to the linear combination of
m1m2, m1m3, m1m4, m1m5, m2m3, m2m4, m2m5, m3m4, m3m5,

and m4m5; and so on, for an n-body, the attraction forces be-
tween bodies are proportional to the linear combination of
mim j, i = 1, · · · , n − 1, j = i + 1. From mathematics of
combination, the number of combination of mass product is n

2

 = n!
2(n − 2)!

.

We know that Kepler’s third law T2|E2|3/2 =

π√
2
G

[
(m1m2)3

m1+m2

]1/2
, which has only one mass product m1m2 of

2-body system. However, for 3-body system we have three
mass product combinations, namely m1m2, m1m3, m2m3, an
analogy to Kepler’s third law, let us propose 3-body Kepler’s
third law as follows:

T3|E3|3/2 =
π
√

2
G

[
(m1m2)3 + (m1m3)3 + (m2m3)3

m1 + m2 + m3

]1/2

. (5)

Clearly, when m3 = 0, eq. (5) is reduced to 2-body Kepler’s
law. In physics, any n-body Kepler’s law should be able to
give 2-body Kepler’s law, which means that the n-body Ke-
pler’s third law must be compatible with 2-body Kepler’s law.
In this regards, our formulation eq. (5) is clearly compatible
with Kepler’s third law.

In the light of Kepler’s third law, applying symmetry of
mass product in Newtonian gravitation field, we would like to
propose following conjecture: an n-body Kepler’s third law
could be expressed as follows:

Tn|En|3/2 =
π
√

2
G

(
S n

Mn

)1/2

, (6)

where Sn =
∑n

i=1
∑n

j=i+1(mim j)3 and total mass Mn =∑n
k=1 mk. eq. (6) has answered the conjecture proposed by

ref. [6], namely, T |E|3/2 = constant, the constant on the
right-hand-side of this equation for a specific mass system is
only a constant rather than “universal”. For instance, S4 =

(m1m2)3+ (m1m3)3+ (m1m4)3+ (m2m3)3+ (m2m4)3+ (m3m4)3,
and S5 = (m1m2)3+(m1m3)3+(m1m4)3+(m1m5)3+(m2m3)3+

(m2m4)3 + (m2m5)3 + (m3m4)3 + (m3m5)3 + (m4m5)3.
To compare with numerical simulation results carried out

by refs. [10, 11], numerical validation will be conducted for
following cases.

Case 1. For 2-body system with G = 1 and m1 = m2 = 1,
Kepler’s third law gives T2|E2|3/2 = π

2 = 1.5707963.
Case 2. For 2-body system with G = 1 and m1 = 1 and

m2 varied. Kepler’s third law gives T2|E2|3/2 = π√
2
( m3

2
1+m2

)1/2.
This law is plotted in Figure 2 for different range of mass m2.
The law has obvious nonlinearity at m2 < 1 and will be more
linear as m2 increasing.

Case 3. For 3-body system with G = 1 and m1 = m2 =

m3 = 1, Li and Liao [10] obtained T |E|3/2 = 2.433 ± 0.075
through numerical curve-fitting. In this case, eq. (5) produces
T3|E3|3/2 = π√

2
= 2.22144. Our prediction is close to 2.358

with error 5.8%.
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Case 4. For 3-body system with G = 1 and m1 = m2 = 1
and m3 varied, Li et al.’s [11] proposed linear law T |E|3/2 =
3.074m3 − 0.617. In this case, eq. (5) gives

T3|E3|3/2 =
π
√

2

[
1 + 2(m3)3

2 + m3

]1/2

. (7)

This relation indicates the Kepler’s third law is nonlinear
function of m3. The numerical comparing are illustrated in
Figures 3 and 4.

The difference for m3 ∈ [0, 1] shown in Figure 3, might
be interpreted as follows: If set m3 = 0, eq. (7) gives 2-body
Kepler’s third law T2|E2|3/2 = π

2 ; however, the linear law
T |E|3/2 = 3.074m3 − 0.617 obtained by Li et al. [11] gives
T |E|3/2 = −0.617, which might have no physical meaning
in domain [0,1], since T |E|3/2 should be positive. Of course,
the linear law T |E|3/2 = 3.074m3 − 0.617 is valid in domain
[1,∞]. Generally speaking, the figures show that our formu-
lation has good linearity and keep same trends as the linear
law in [11].

Case 5. If we keep m1 varied and set all other point masses
to be unit mass, namely mk = 1, k , 1, what’s going to
happen? Kepler’s third law of those four cases have been
illustrated in the Figure 5, which indicate that the more point
masses the system has, the higher orbit period it has. In gen-
eral, Tn+1|En+1|3/2 > Tn|En|3/2 can be proven.

Case 6. For a system with point masses (M, 1, 1, 1, · · · , 1),
if M were massive and much heavier than other unit mass and
their summation, then we have an interesting result as follows
Tn|En|3/2 ≈ ( n−1

2 )1/2πGM, clearly, it is a linear law of single
massive mass, M.

This study considered the periodic orbital period of an n-
body system from the perspective of dimensional analysis

m2 m2

T
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|3
/2
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|E
|3
/2

(a) (b)

Figure 2 (Color online) Kepler’s law for G = 1 and m1 = 1 and m2 varied.
(a) m2 ∈ [0, 1]; (b) m2 ∈ [0, 10].
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Figure 3 (Color online) Comparing for different m3. (a) m3 ∈ [0, 1]; (b)
m3 ∈ [0, 12].
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Figure 4 (Color online) Comparing for different m3. (a) m3 ∈ [0, 100]; (b)
m3 ∈ [1, 10000].
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Figure 5 (Color online) Comparing of 3-body, 4-body and 5-body system
at m1 ∈ [0, 12].

and symmetry of mass product. The universal law of an n-
body system is deduced: Kepler’s third law, namely the peri-
odic law, states that periodic motion of an n-body system sat-
isfies the 3/4 power law of the orbital area, or the 3/2 power
law of the total energy, and or the product of Tn|En|3/2 is a
constant for a given point-mass system. In light of Keplers
third law, we proposed a generalized Keplers third law for an
n-body system. A numerical validation and comparison study
was hence conducted. This study may open a new avenue for
the investigation of the multi-body system.
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(2013).
7 V. Dmitrašinović, M. Šuvakov, and A. Hudomal, Phys. Rev. Lett. 113,

101102 (2014).
8 M. S̆uvakov, and V. Dmitras̆inović, Am. J. Phys. 82, 609 (2014).
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