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Abstract Compatibility conditions of a deformation field in continuum mechanics have
been revisited via two different routes. One is to use the deformation gradient, and the
other is a pure geometric one. Variations of the displacement vector and the displacement
density tensor are obtained explicitly in terms of the Riemannian curvature tensor. The
explicit relations reconfirm that the compatibility condition is equivalent to the vanishing
of the Riemann curvature tensor and reveals the non-Euclidean nature of the space in
which the dislocated continuum is imbedded. Comparisons with the theory of Kröner
and Le-Stumpf are provided.
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Nomenclature

B, undeformed state or configuration;
b, deformed state or configuration;
X ,Y , position vector in undeformed state;
x,y, position vector in deformed state;
dS, line element length in undeformed

state;
ds, line element length in deformed state;
GA, base vector in undeformed state;
gk, base vector in deformed state;
GAB , metric tensor in undeformed state;
gij , metric tensor in deformed state;
u, displacement vector;
F , deformation gradient;
B, left Cauchy-Green deformation tensor;
C , right Cauchy-Green deformation ten-

sor;
E, Green strain tensor;
L, velocity gradient tensor in undeformed

state;

l, velocity gradient tensor in deformed
state;

D, rate of deformation tensor in unde-
formed state;

d, rate of deformation tensor in deformed
state;

W , spin tensor in undeformed state;
w, spin tensor in deformed state;
RKLMN , Riemann curvature tensor compo-

nents in undeformed state;
rklmn, Riemann curvature tensor compo-

nents in deformed state;
R, Riemann curvature tensor in unde-

formed state;
r, Riemann curvature tensor in deformed

state;
ΓIJKL, Christoffel symbols in undeformed

state;
γijkl, Christoffel symbols in deformed state;
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∆u, displacement vector variation;
∇, gradient nabla;
∇x, gradient nabla respect to x;
∂Ψ, boundary of surface Ψ in B;
∂ψ, boundary of surface Ψ in b;
ε, permutation tensor;
ǫ, symmetric part of displacement gradi-

ent;
Ω, antisymmetric part of displacement

gradient;
ω, axial vector of Ω;
∧, exterior product or wedge product;
⊗, tensor product;
dA, area element in undeformed state;
da, area element in deformed state;
b, Burgers vector;
T , dislocation density tensor in unde-

formed state.

1 Introduction

In the continuum description of a solid body, we imagine the body to be composed of a
set of infinitesimal volumes or material points. Each volume is assumed to be connected to its
neighbours without any gaps or overlaps. Certain mathematical conditions have to be satis-
fied to ensure that gaps/overlaps do not develop when a continuum body is deformed. These
compatibility conditions[1–4] are mathematical conditions that determine whether a particular
deformation will leave a body in a compatible state. The investigation of the compatibility con-
ditions will be beneficial to the studies of plastic deformation[5–7] and dislocation/defects[8–22]

in the solid .
Love[23] credited Barré de Saint-Venant (1864) who was the first to discover the derivation

of the “bulk” compatibility equations. In 1876, the proof of the equations was developed by
Kirchhoff[24], and was later rigorously proven by Beltrami[25] in 1886. In 1899, Michell[26]

studied the compatibility equations of linearized elasticity in two dimensions for non-simply-
connected bodies. He showed that compatibility requires vanishing of certain integrals on
each “independent irreducible circuit”. In 1901, Weingarten[27] provided a famous theorem
on the conservation of the integration of displacement and rotation along any closed loop in
the infinitesimal deformation. Cesàro[28] and Volterra[29] studied compatibility equations for
non-simply-connected bodies and the possibility of multi-valuedness of displacements when
the body is not simply-connected. Volterra[30] may have been the first person to provide the
correct definition of dislocation and disclination. Love[23], Krutkov[31], Beltrami[32], Green and
Zerna[33], and Seugling[34] realized that the classical compatibility equations of elasticity can be
written as vanishing of the curvature tensor of the Levi-Civita connection of strain (understood
as a metric). In 1960, Kröner’s deep insight was understanding the incompatibility as a genuine
geometric property of the dislocated crystal[12]. Pietraszkiewicz[35] and Pietraszkiewicz and
Badur[36] studied the problem of calculating the deformation mapping when the right Cauchy-
Green strain was given, and they obtained a nonlinear analogue of the Cesàro integral. Blume[37]

discussed the compatibility equations in terms of the left Cauchy-Green strain B = FF T in
two dimensions. In 1994 and 1995, Le and Stumpf [18–19] studied the compatibility conditions
of elasto-plastic deformation and for the first time obtained the dislocation density tensor in
terms of the Christoffel symbols for both elastic and plastic deformation gradients. In 1999,
Acharya[38] studied the same problem in three dimensions. Yavari and Goriely[39] and Yavari[40]

presented the compatibility conditions in the most abstract format by using exterior differential
forms for both simply- and non-simply-connected bodies. It is noteworthy that for the sake of
disseminating knowledge of compatibility theory, Guo and Liang[16] wrote the first and only
comprehensive monograph on the topics, where they applied abstract tensors, modern non-
Riemanian geometry and gauge theory to attack dislocations and defects. In 2016, Sun[17]

revisited the explicit expression of incompatible condition in terms of the Riemann curvature
tensor and its application to the theory of shells.

In a three-dimensional space, the deformation tensor C = FF T and the strain tensor E =
EABGAGB both have six components, which are expressible in terms of the three components
uk of the displacement vector, namely, 2E = FF T−I = C−I = (uA;B+uB;A+uK

;AuK
;B)GAGB.
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If the displacement vector and components u = uAGA possess continuous first-order partial
derivatives, we obtain the strain components 2EAB = uA;B + uB;A + uK

;AuK
;B. Conversely, if

the six strains Eij are given, then a question arises regarding the existence of a single-valued
continuous displacement field, which corresponds to the given strains. It is clear that the
six partial differential equations are an over-determined system, and may not possess such a
solution to the three unknown uA, unless certain integrability conditions are satisfied. These
conditions constitute a set of partial differential equations, which involve strains EAB alone,
and are known as the compatibility conditions. When the compatibility conditions are violated,
the corresponding displacement field is not unique. The body may then possess dislocations.

From a mathematical point of view, a compatible deformation (or strain) tensor field in a
body is the one that a unique field is obtained when the body is subjected to a continuous,
single-valued, displacement field. Compatibility is the study of the conditions under which such
a displacement field can be guaranteed. There are two approaches to finding the compatibility
conditions.

An obvious way of finding the compatibility conditions is elimination of the displacements
uA from the six equations 2EAB = uA;B +uB;A+uK

;AuK
;B by partial differentiation. This method

(for the finite strain) is, however, tedious, if not extremely awkward. There are two alternative
methods, namely, the Riemann method, where one makes use of the Riemann theorem, and the
other is that the displacement change along a closed loop must be vanishing, which is called
the displacement change method.

With the Riemannian method, we know that the three-dimensional space in which the
deformation takes place is Euclidean. These arc lengths dS and ds of the undeformed and
deformed bodies are given by dS2 = dX · dX = δKLdXKdXL = gkldxkdxl and ds2 = dx ·

dx = δkldxkdxl = GKLdXKdXL. Both the undeformed and deformed bodies are imbedded
in an Euclidean space. In the coordinates xK , the original length is calculated when all six
components gkl are known, and for the calculation of the final length, we need all six components
of GKL. Thus, if we look at the motions xk = xk(X1, X2, X3), k = 1, 2, 3, as transformed
coordinates from rectangular coordinates XK to curvilinear coordinates xk at the fixed time t,
then gkl plays the role of metric tensor in the curvilinear coordinates xk, and the same is valid
for GKL for the inverse motion.

In an Euclidean space, any six quantities cannot be a metric tensor unless they satisfy the
Riemann theorem[2,16], namely, for a symmetric tensor akl to be a metric tensor for an Euclidean
space, it is necessary and sufficient that akl should be a nonsingular positive definite tensor, and
the Riemann-Christoffel tensor[33,42] RKLMN that is formed from it should vanish identically.
Both GKL and gkl are nonsingular symmetric and positive definite tensors of the Euclidean
three-dimensional space. Therefore, both the Riemann-Christoffel tensors of the undeformed
and deformed configuration must vanish, i.e.,

RKLMN = 0, undeformed state,

rklmn = 0, deformed state.

Regarding the former condition, the partial differentiation is understood to be with respect to
XK and regarding the latter, with respect to xk. The RKLMN = 0 gives six partial differential
equations, which constitute the compatibility conditions for GKL, and rklmn = 0 gives six
partial differential equations for gkl. Since we have GKL = δKL + 2EKL and gkl = δkl − 2ekl,
where EKL is the Lagrange strain tensor, and ekl is the Euler strain tensor, we get compatibility
conditions for EKL and ekl. The detailed compatibility conditions for the finite deformation
can be found in the master works of Truesdell and Toupin[2].

In the context of the infinitesimal strain theory, these conditions are equivalent to stating
that the displacements in a body can be obtained by integrating the strains. Such an integration
is possible if the Saint-Venant’s tensor vanishes in a simply-connected body, ∇ × ǫ × ∇ = 0,
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where ǫ is the infinitesimal strain tensor. This total expression1 of compatibility conditions
was obtained by Krutkov[31] and Beltrami[32], and was re-introduced by Kröner in the linear
continuum theory of dislocation[43].

With the displacement change method, for finite deformations, the compatibility conditions
of a simply-connected body can be expressed as the displacement change ∆u along any closed
loop within the body that must vanish, which means that ∆u =

∮

∂Ψ du = 0, and according
to the Stokes theorem, we have

∮

∂Ψ du = −
∫

Ψ F × ∇X · dA = 0, ∂Ψ is the closed boundary
of domain or surface Ψ. The integral can be transferred into the form curlF = F × ∇X = 0
or in the differential form dF = 0, where F = ∂x

∂X
= x∇X is the deformation gradient, and

X and x are coordinates in the reference and current configuration, respectively. For non-
simply-connected bodies, the compatibility conditions should be dF = 0 and

∮

∂ΨK
F ·dX = 0,

where ∂ΨK is the closed loop around the holes, and K runs from 1 to the number of holes or
defects[39–40].

Regarding the Riemannian method, it is clear to see that the relationship between the
displacement vector variation ∆u and the compatibility condition R = 0 is still unknown.
Similar to the displacement change method, the explicit relation between the compatibility
condition F ×∇X = 0 and R has not been established yet. The two methods could be proven
to be equivalent if the displacement vector variation ∆u can be represented in terms of the
Riemannian curvature tensor R.

The open problem is how to find the relationship between ∆u and R via either Route
1 or Route 2, where Route 1 uses the deformation gradient, ∆u =

∮
(F − I) · dX, and

Route 2 uses a pure geometric formulation, ∆u =
∮

du. In other words, Route 1 is the
deformation kinematics way, and Route 2 is the pure differential geometry way.

For the purpose of clarity, the problem of finding ∆u =

∮

(F − I) · dX

︸ ︷︷ ︸

Route 1

=

∮

du

︸ ︷︷ ︸

Route 2

is shown

in Fig. 1.

Fig. 1 Two routes to finding ∆u

The aim of this paper is to formulate the explicit expressions of displacement vector varia-
tion and other quantities in terms of the Riemann tensor. The paper is organized as follows.
Following an introduction, Section 2 derives the displacement vector variation ∆u in terms of
the Riemann tensor R, and gives the curl of the deformation gradient, the displacement flux
tensor and the rate of deformation tensor. Section 3 reformulates the displacement vector vari-
ation by using exterior differential forms. Section 4 presents the Burgers vector and dislocation
density tensor and compares with some well-known results. Section 5 provides a proof for the
displacement vector variation without using the deformation gradient. Section 6 concludes the
paper, and the appendix gives some preliminaries on the finite deformation field and notations,
and all relevant expressions in the deformed state.

1Total expression is in terms of its components and the unit vectors, for instance, a second-order
tensor A = Aije

iej = Aijeiej = Aijeiej .
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2 Formulations in undeformed state using deformation gradient

In this section, we will follow Route 1 shown in Fig. 2 to find the explicit expression of ∆u

in terms of the Riemann curvature tensor R by using the deformation gradient F .

Fig. 2 Route 1 using deformation gradient F

2.1 Displacement vector variation
Definition 1 Let ∆u be the change of the displacement vector along a closed curve. The

definition of the displacement vector variation ∆u is given by

∆u =

∮

∂Ψ

du =

∮

∂Ψ

d(x − X) =

∮

∂Ψ

∂(x − X)

∂X
· dX

=

∮

∂Ψ

( ∂x

∂X
−

∂X

∂X

)

· dX =

∮

∂Ψ

(F − I) · dX, (1)

where the closed loop ∂Ψ is the boundary of the surface domain Ψ.
Theorem 1 Let u and R be the displacement field and the Riemann curvature tensor,

respectively. In the undeformed state B, the displacement vector variation ∆u can be presented
explicitly in terms of the Riemann curvature tensor as follows :

∆u = −
1

2

∫∫

Ψ

(ε : R(GA, GB)u) · dA

= −
1

2

∫∫

Ψ

(uR(GA, GB) : ε) · dA, (2)

where ε is the permutation tensor.
Proof Since x = X + u, Eq. (1) can be rewritten as

∆u =

∮

∂Ψ

du =

∮

∂Ψ

∂u

∂X
· dX =

∮

∂Ψ

(F − I) · dX, (3)

where F = I + ∂u
∂X

= I + u∇X , where u∇X is the displacement gradient with respect to X,
and F − I = (∇Au)GA. The displacement change can be expressed as

∆u =

∮

∂Ψ

(∇Au)GA · dX. (4)

In terms of the Stokes theorem, Eq. (4) can be transferred into the surface integration as
follows:

∆u = −

∫∫

Ψ

(F − I) × ∇X · dA

= −

∫∫

Ψ

(F × ∇X − I × ∇X
︸ ︷︷ ︸

=0

) · dA

= −

∫∫

Ψ

F × ∇X · dA

= −

∫∫

Ψ

(∇Au)GA × ∇X · dA, (5)



316 Bohua SUN

in which I is a unit symmetric tensor, the identity I × ∇ = 0 is used, and dA = dX × dX is
the surface element vector in the undeformed state B.

Since the gradient operator ∇X = ∂
∂XB GB = ∇BGB, we can continue with the calculation

of Eq. (5),

∆u = −

∫∫

Ψ

(∇Au)GA × (GB∇B) · dA

= −

∫∫

Ψ

((∇A∇Bu)GA × GB) · dA

= −

∫∫

Ψ

((∇A∇Bu)εABCGC) · dA, (6)

where εABC is the permutation symbol. Using the property of εABC , the sign of εABC will be
changed if we change the order of A and B, namely, εABC = −εBAC . Therefore, Eq. (6) can be
rewritten as

∆u = −
1

2

∫∫

Ψ

((∇A∇Bu)εABCGC + (∇A∇Bu)εABCGC) · dA

= −
1

2

∫∫

Ψ

((∇A∇Bu)εABCGC − (∇B∇Au)εABCGC) · dA

=
1

2

∫∫

Ψ

((∇B∇Au −∇A∇Bu)εABCGC) · dA

= −
1

2

∫∫

Ψ

((∇A∇Bu −∇B∇Au)εABCGC) · dA

= −
1

2

∫∫

Ψ

((∇A∇Bu −∇B∇Au)GA × GB) · dA. (7)

Introducing the Riemann curvature tensor2, for Eq. (7), we have the Riemann curvature tensor
component R(GA, GB)

∇A∇Bu −∇B∇Au = (∇A,∇B)u

= R(GA, GB)u. (8)

When we substitute Eq. (8) and GA × GB = GAGB : ε = ε : GAGB into Eq. (7), we obtain

∆u = −
1

2

∫∫

Ψ

(uR(XA, XB)GA × GB) · dA

= −
1

2

∫∫

Ψ

(uR(GA, GB)GAGB : ε) · dA

= −
1

2

∫∫

Ψ

(ε : R(GA, GB)GAGBu) · dA, (9)

where the permutation tensor ε = εABCGAGBGC .

2The Riemann tensor is given in terms of the Levi-Civita connection ∇ by the following formula:
R(u,v)w = ∇u∇vw − ∇v∇uw − ∇[u,v]w, where [u, v] is the Lie bracket of vector fields. For each
pair of tangent vectors u and v,R(u,v) is a linear transformation of the tangent space of the manifold.
It is linear in u and v, and thus defines a tensor. If u = ∂

∂xi and v = ∂

∂xj are coordinate vector
fields, then [u,v] = 0, and therefore the formula simplifies to R(u,v)w = ∇u∇vw − ∇v∇uw. The
curvature tensor measures noncommutativity of the covariant derivative, and as such is the integrability
obstruction for the existence of an isometry with Euclidean space (called, in this context, flat space).
The linear transformation w 7→ R(u,v)w is also called the curvature transformation or endomorphism.
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Introducing the Riemann curvature tensor R(GA, GB) = R(GA, GB)GAGB, the relation-
ship between the displacement vector variation and the Riemann tensor can be finally estab-
lished as follows:

∆u = −
1

2

∫∫

Ψ

(ε : R(GA, GB)u) · dA

= −
1

2

∫∫

Ψ

(uR(GA, GB) : ε) · dA. (10)

This explicit relationship between ∆u and Riemann tensor R states that the displacement
vector variation generally does not vanish around a closed loop.

With the explicit relationship (10), the compatibility condition can be stated as that the
vanishing of displacement vector variation will lead to the vanishing of the Riemann tensor.
The proof is complete.

The above results can be expressed in the conventional format. For example, Eq. (8) can be
represented as

R(GA, GB)u = ∇A∇Bu −∇B∇Au

= (∇A∇BuK −∇B∇AuK)GK

= RJ
.KABuJGK

= RJ
.KABu · GJGK . (11)

Thus,

∆u = −
1

2

∫∫

Ψ

(RJ
.KABu · GJGKGAGB : ε) · dA

= −
1

2

∫∫

Ψ

(u · R : ε) · dA, (12)

where the Riemann curvature tensor R = RJ
.KABGJGKGAGB, and RJ

.KAB are the components
of the Riemann tensor[33,42],

RJ
.KAB := ∂AΓJ

BK − ∂BΓJ
AK + ΓJ

AMΓM
BK − ΓJ

BMΓM
AK , (13)

where the Christoffel symbols ΓI
JK are called the coefficients of the affine connections, or

Christoffel symbols, with respect to the frame GJ , that is to say, ∇GJ
GK = GIΓ

I
JK .

2.2 Displacement flux tensor
Theorem 2 Let u and R be the displacement field and the Riemann curvature tensor,

respectively. The curl of the deformation gradient curl F can be expressed explicitly in terms
of the Riemann curvature tensor as follows :

curl F = F × ∇X =
1

2
u · R : ε, (14)

or in the conventional form:

curl F =
1

2
RJ

.KABu · GJGKGAGB : ε =
1

2
RJ

.KABuJ · GKGA × GB. (15)

Proof From the previous formulations (5) and (12), we have ∆u =
∮

∂Ψ
du =

∮

∂Ψ
∂x
∂X

·

dX =
∮

∂Ψ
(F − I) · dX = −

∫∫

Ψ
F × ∇X · dA = −

∫∫

Ψ
u · R(GA, GB) : ε · dA. Then, we get

(14) and (15). The proof is complete.
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Since F × ∇X = F∇X : ε, the relationship between F and the Riemann tensor R can be
also expressed as follows:

F∇X =
1

2
u · R. (16)

Since the curvature transformation or endomorphism is linear, the 2nd derivatives of the dis-
placement vector u in the F × ∇X have been transferred into a linear form of u. The beauty
is that there are no derivatives of the displacement vector on the right hand of Eq. (14). Fur-
thermore, since the geometric meaning of the Riemann curvature R represents the curvature
of space, Eqs. (14) and (15) clearly reveal the geometrical nature of F × ∇X , namely, the curl
of the deformation gradient F × ∇X is linearly proportional to the Riemann curvature R and
the displacement vector u.

Due to the arbitrary nature of the displacement vector u, the compatibility condition for a
simply-connected body can be stated that the compatibility condition curl F = 0 is equivalent
to the vanishing of the Riemann tensor as R = 0.

Since the surface Ψ and its closed boundary ∂Ψ are arbitrary, for infinitesimal contours ∂Ψ,
we get from Eq. (10)

d∆u = −
1

2
(ε : R(GA, GB)u) · dA

= −
1

2
(uR(GA, GB) : ε) · dA

= −
1

2
(u · R : ε) · dA, (17)

and

T =
d∆u

dA
= −

1

2
ε : R(GA, GB)u

= −
1

2
uR(GA, GB) : ε

= −
1

2
u · R : ε. (18)

T = d∆u
dA

is called the displacement flux tensor defined in the undeformed state B. The

displacement density tensor is related to the continua dislocation density tensor[8–16,18–22]. (18)
can also be rewritten as ε · d∆u

dA
= −u · R.

From the above formulations, we can have a corollary as follows.
Corollary 1 The symmetric part of the deformation gradient F has no contribution to the

displacement change ∆u and the displacement density tensor T .
Proof Let S = 1

2 (F +F T) and Ω = 1
2 (F −F T) be the symmetric part and anti-symmetric

part of the deformation gradient F , respectively. As we know, any tensor can be decomposed
into a symmetric and an antisymmetric part, namely, F = S + Ω. Since the curl of the
symmetric tensor vanishes curl S = S ×∇X = 0, curl F = curl (S + Ω) = curl Ω = Ω×∇X .
Hence, we have

curl Ω = curl
(1

2
(F − F T)

)

=
1

2
ε : R(GA, GB)u

=
1

2
u · R : ε. (19)

curl S = 0 indicates that the symmetric part of the deformation gradient F has no contribution
to the comparability conditions. In other words, the symmetric deformations are always com-
patible, and the incompatible deformation will make the symmetric deformation break down.
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Since curl Ω = Ω× ∇X = Ω∇X : ε, Ω∇X : ε = R(GA, GB)u : ε, we have

Ω∇X =
1

2
R(GA, GB)u =

1

2
u · R. (20)

2.3 Curl of rate of deformation tensor
In continuum mechanics, the strain rate tensor D or d is a physical quantity that describes

the rate of deformation change of a material in the neighbourhood of a certain point, and at
a certain moment in time. It can be defined as the derivative of the strain tensor with respect
to the time, or as the symmetric component of the gradient of the flow velocity u̇, namely, the
rate of the deformation tensor L or l.

The strain rate tensor is a purely kinematic concept that describes the macroscopic motion
of the material. Therefore, it does not depend on the nature of the material, or on the forces
and stresses that may be acting on it, and it can be applied to any continuous medium, whether
solid, liquid or gas.

In the undeformed state B, taking a material derivative to Eq. (1) with respect to time

∆u̇ =

∮

∂Ψ

du̇ =

∮

∂Ψ

u̇∇X · dx =

∮

∂Ψ

l · F · dX

=

∮

∂Ψ

Ḟ · dX = −

∫∫

Ψ

Ḟ ×∇X · dA

= −
1

2

∫∫

Ψ

(u̇ · R : ε) · dA. (21)

Hence, the explicit relationship between Ḟ and the Riemann tensor R is

Ḟ ×∇X =
1

2
u̇ · R : ε. (22)

Since Ḟ ×∇X = F∇X : ε,

Ḟ∇X =
1

2
u̇ · R. (23)

All formulations in the undeformed state are summarized in Table 1.

Table 1 Total tensorial expressions

Parameter Undeformed state Deformed state

∆u −
1

2

RR

Ψ(u · R : ε) · dA −
1

2

RR

Ψ u · r : ε · da

F × ∇
1

2
u · R : ε

1

2
u · r : ε

F∇
1

2
u · R

1

2
u · r

T −
1

2
u · R : ε −

1

2
u · r : ε

Ω∇
1

2
u · R

1

2
u · r

ε · (ω∇) −
1

2
u · R −

1

2
u · r

Ḟ∇
1

2
u̇ · R

1

2
u̇ · r

l∇
1

2
u̇ · R

1

2
u̇ · r

Corresponding formulations in the deformed state b are given in Appendix C.
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3 Formulations by exterior differential forms using deformation gradient

The previous results are still dependent on the choice of coordinates. In order to generalize
them into the coordinate-free form, let us reformulate them by using exterior differential forms.
Exterior differential forms arise when concepts as the work of a field along a path and flux of a
fluid through a surface are generalized to higher dimensions[44–45], which provides a unified ap-
proach to defining integrands over curves, surfaces, volumes, and higher-dimensional manifolds.
The modern notion of differential forms was pioneered by Cartan[46–47], who made it possible to
extend this algebraic structure to include the exterior differential forms by employing exterior
products of differentials of coordinates. It was then possible to define exterior differential form
fields on differentiable manifolds that are locally equivalent to Euclidean spaces and to intro-
duce an analysis of forms in which only the first order derivatives survive. It was soon realised
that this analysis would be one of the most powerful, perhaps indispensable tools of the modern
differential geometry, and many mathematical properties could be relatively easily revealed by
almost algebraic operations. Moreover, it is perhaps not wrong to claim that the mathematical
structure of theoretical physics today is entirely based on the formalism of differential geom-
etry. We also observe that this formalism is increasingly infiltrating into engineering sciences
to study some fundamental problems and even in many practical applications. Therefore, the
exterior analysis is no longer in the realm of mathematicians. It seems that it would now be
quite beneficial for physicist and engineers to acquire a rather good skill in dealing with exterior
forms[41,45,49–50]. In this section, we will take some materials from those books and apply to
our problem. In those mathematics books, all formulations are presented in the component
form. Therefore, we have to convert all formulations into total tensor expressions, which is an
innovative point of this paper.

Theorem 3 In the undeformed state B, let u be the displacement field and R be the
Riemann curvature tensor. The displacement change ∆u, dF and the displacement density
tensor T can be expressed explicitly in terms of the Riemann curvature tensor R as follows :

∆u = −
1

2

∫

Ψ

R(X, Y )u · dA, (24)

dF = −
1

2
R(X, Y )u · dX, (25)

T = −
1

2
R(X, Y )u. (26)

Proof Let B be the undeformed state and du = F · dY = ∇Y u · dY , (X, Y ) ∈ B.
According to the Stokes integration theorem, we have the displacement vector variation along
an arbitrary closed loop as follows:

∆u =

∮

∂Ψ

du =

∫

Ψ

d(du)

=

∫

Ψ

d(F · dY ) =

∫

Ψ

d(∇Y u · dY ), (27)

in which ∂Ψ is the closed boundary of a surface Ψ ∈ B, and du = ∇Y u ·dY is a vector-valued
1-form. Differentiating the above equation once more yields the vector-valued 2-form,

d(F · dY ) = dF ∧ dY + (−1)0F ∧ d2Y

= dF ∧ dY

= d(∇Y u · dY )

= d(∇Y u) ∧ dY + (−1)0∇Y ud2Y

= ∇Y (∇Xu) · dX ∧ dY

= ∇Y ∇Xu · dX ∧ dY , (28)
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where Poincaré Lemma[48] is used for d2Y = 0.
Due to the antisymmetric nature of exterior algebra, dX ∧ dY = −dY ∧ dX,

d(∇Y u · dY ) = −
1

2
(∇X∇Y u − ∇Y ∇Xu) · dX ∧ dY . (29)

According to the definition of the Riemann operator

R(X, Y )u = ∇X∇Y u − ∇Y ∇Xu − ∇[X,Y ]u, (30)

and in the coordinate frame, the torsion curvature ∇[X,Y ]u = 0, we have

∇X∇Y u − ∇Y ∇Xu = R(X, Y )u. (31)

If we expand the vector fields in terms of the coordinate basis ∂I , the Riemann tensor R(X, Y )u
= (RI

JKLXKY LuJ)∂I and its components RI
JKL := ∂KΓI

LJ − ∂LΓI
KJ + ΓI

KMΓM
LJ − ΓI

LMΓM
KJ .

The symbol ΓI
JK is called the coefficients of the affine connections, or the Christoffel symbols,

with respect to the frame GJ , that is, ∇GJ
GK = GIΓ

I
JK .

Therefore, we have

d(∇Y u · dY ) = −
1

2
(∇X∇Y u − ∇Y ∇Xu) · dX ∧ dY

= −
1

2
R(X, Y )u · dX ∧ dY . (32)

Finally, we have the displacement change in differential forms

∆u = −

∫

Ψ

d(∇Y u · dY )

= −
1

2

∫

Ψ

(∇X∇Y u − ∇Y ∇Xu) · dX ∧ dY

= −
1

2

∫

Ψ

R(X, Y )u · dX ∧ dY . (33)

Note that the area element dA = dX ∧ dY , hence, the dislocation density tensor T and the
incompatibility operator inc(F )

T =
du

dA
= −

1

2
R(X, Y )u. (34)

Since dF ∧ dY = −(1/2)Ru · dX ∧ dY , we have

dF = T · dX = −
1

2
R(X, Y )u · dX. (35)

The proof is complete.
Note that the above F is not unique. In fact, if Π = F + dΛ for any forms Λ and Π,

because d(dΛ) is identical to zero,

dΠ = d(F + dΛ) = dF = −
1

2
R(X, Y )u · dX. (36)

This freedom of choice in selecting Π is called the gauge invariance, and its generalization plays
an important role in physics.

Making a material time derivative on the above equation renders the rate of the deformation
gradient,

dḞ = −
1

2
R(X, Y )u̇ · dX. (37)

All formulations are listed in Table 2.
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Table 2 Exterior differential forms

Parameter Undeformed state Deformed state

∆u −
1

2

RR

Ψ R(X, Y )u · dX ∧ dY −
1

2

RR

Ψ r(x, y)u · dx∧ dy

dF −
1

2
R(X, Y )u · dX −

1

2
r(x, y)u · dx

dḞ −
1

2
R(X, Y )u̇ · dX −

1

2
r(x, y)u̇ · dx

T −
1

2
R(X, Y )u −

1

2
r(x, y)u

Using the language of differential forms, the compatibility conditions in the deformed state
B can be simply stated as follows:

(i) Compatibility conditions of simply-connected bodies
For simply-connected bodies, the displacement change integral along the closed loop must be

zero, d(F ) = 0. Therefore, the Riemann tensor R(X, Y ) must vanish because of the arbitrary
nature of the displacement u.

(ii) Compatibility conditions of non-simply-connected bodies
For non-simply-connected bodies, the vanishing of Riemann tensor is not enough and needs

extra conditions. According to the theorem of de Rham[47,51–52], these extra conditions are
∮

∂Ψi
du =

∮

∂Ψi
F ·dX = 0, where ∂Ψi are the closed loops, including the holes and/or defects,

which has been well studied by Yavari in 2013[40].

4 Burgers vector and dislocation density tensor

In materials science, a dislocation is a crystallographic defect, or an irregularity within
a crystal structure. The presence of dislocations strongly influences most of the materials
properties. The theory that describes the elastic fields of the defects was originally developed by
Volterra[30] in 1907, but the term “dislocation”, which refers to a defect on the atomic scale was
coined by Taylor[5] in 1934 to explain the plastic deformation of a single crystal. Mathematically,
dislocations are a type of topological defect and in some way the incompatibility is related to
the dislocation.

Nye[8] studied the geometry of dislocation under small deformations. The idea that the ge-
ometry of a dislocated crystal can be appropriately represented in terms of non-Euclidean space
was first introduced by Kondo[9–10] and Bilby et al.[11], independently, reaching its culmination
in Kröner’s essay[12]. The study of dislocation geometry shows that the space in which the
dislocated continuum is imbedded will have a non-zero Riemann curvature, therefore, the space
is non-Euclidean but the Riemannian space.

In order to compare with the well-known results of Kröner[12], and Le and Stumpf[18–19], let
us apply the previous formulations to the Burgers vector. In physics, the Burgers vector is a
vector, which is often denoted as b, and represents the magnitude and direction of the lattice
distortion that results from a dislocation in a crystal lattice.

Given a material with a distribution of dislocations, the Burger vector b enclosed by a curve
∂Ψ in the reference state is commonly defined in terms of an integral,

b =

∮

∂Ψ

du. (38)

When one compares this definition with the displacement change that is integral in the profuse
section, the Burgers vector b can definitely be expressed in the Riemann tensor,

b =

∮

∂Ψ

du = −
1

2

∫

Ψ

(u · R : ε) · dA = −
1

2

∫

Ψ

u · r : ε · da. (39)
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For infinitesimal contours ∂Ψ, the above equation can be expressed as follows:

db = −
1

2
u · R : ε · dA = −

1

2
u · r : ε · da. (40)

Since the dislocation b 6= 0, the Riemann tensors in both undeformed and deformed states do
not vanish, that is, R 6= 0 and r 6= 0.

If we compare Eqs. (39) and (40) with Eqs. (56) and (57) of Ref. [12], it is easy to see that
they are completely the same except in different notations. Here, we use total expressions of
tensor and the component form used by Kröner, who obtained the Burgers vector component
bk = 1

2

∫∫
(∂mAk

l − ∂lA
k
m)dFml and its variation ∆bk = 1

2 (∂mAk
l − ∂lA

k
m)∆Fml, where Ak

l is

the deformation gradient, and ∆Fml is the small surface element[12].
From Eq. (39) we can define the dislocation density tensors T and t for the undeformed and

deformed states, respectively,







T =
db

dA
= −

1

2
u · R : ε, undeformed state,

t =
db

da
= −

1

2
u · r : ε, deformed state.

(41)

It is clear that both dislocation density tensors are explicitly linked to the Riemann tensors.
The basic formula is listed in the table below.

Table 3 Basic dislocation formula

Parameter Undeformed state Deformed state

b −
1

2

R

Ψ(u · R : ε) · dA −
1

2

R

Ψ u · r : ε · da

T −
1

2
u · R : ε −

1

2
u · r : ε

If we compare the second equation of (41) with Eq. (59) of Kröner[12], it is also easy to see
that they have completely the same format except in different notations. Kröner obtained the
Burgers vector component variation ∆bk ≡ αk

ml∆Fml, where αk
ml = 1

2Ak
κ(∂mAκ

l − ∂lA
κ
m) is

dislocation density tensor components in the deformed state[12].
In 1994 and 1995, Le and Stumpf[18–19] obtained the similar results while they studied

the finite elasoplaticity with microstructures, they derived the Burgers vector component in
the undeformed state as (b)a = 1

2 ((F e−1)α
c,b − (F e−1)α

b,c)dxb ∧ dxc, where F e is the elastic

deformation gradient[18]. Since the elastic deformation gradient F e cannot be the gradient of
global maps u (F e is incompatible)[6], the above formula cannot be further expressed in terms
of the Riemann tensor. Nevertheless, the formulation of Le and Stumpf[18] is very general, and
in the case of deformation without plastic, their result can be reduced to Eqs. (39), (40), and
(41) of this study. From this point of view, Eqs. (39), (40), and (41) will be consistent with the
theory of Le and Stumpf[18–19] when the plastic deformation is not taken into account.

5 Displacement vector variation derived without using deformation gradi-
ent

After completing the previous formulations along Route 1, we find that Eqs. (12) and (33)
taking the same form of a change on a vector is parallel displaced around a closed curve (Page
262, Frankel[41]), the only difference is that the formulation process of Eq. (12) does not require
the displacement vector u being parallel transported around a closed loop ∂Ψ and is purely
based on the deformation gradient without any other manipulation.
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We then notice that, in 1960, Kröner[12] took the vector difference ∆Ck = − 1
2Rk

nmlC
l∆Fnm

from differential geometry textbooks and applied to his dislocation theory without giving a
justification, although the equation on the vector Ck is also derived by using the concept of
parallel displaced vector.

Now we have a question, i.e., are Eqs. (12) and (33) derived from the deformation gradient
exactly the same as the Ck formulated from the pure geometric perspective? We believe that
the answering of this question is important to know the validation scope of the mathematical
formula and in the same time provides an insurance on its applications.

To answer the question, we will follow Route 2 in Fig. 3 to find the explicit expression of
∆u in terms of the Riemann curvature tensor R without using the deformation gradient F .

Fig. 3 Route 2 without deformation gradient F

From the definition of the displacement vector variation, we have ∆u =
∮

∂Ψ du, and ac-
cording to the Stokes integration theorem of exterior calculus, we have

∆u =

∮

∂Ψ

du =

∫∫

Ψ

d(du) =

∫∫

Ψ

d2u. (42)

Starting with the basis Gi and an arbitrary displacement vector u = uiGi, operate on it with
d twice, keeping in mind that its action on functions and differential forms is exactly the same
as the exterior derivatives, thus du = duiGi + uidGi and according to the Poincaré lemma
d2ω = 0, we have

d2u = d2ui

︸︷︷︸

= 0

Gi + (−1)1dui ∧ dGi + dui ∧ dGi
︸ ︷︷ ︸

=0

+uid2Gi = uid2Gi. (43)

This equation has a remarkable property. It leaves the components of u undifferentiated.
It appears that d2u depends not only on external objects (vector), but also on the intrinsic
property of the manifold[41,45,49,51,53].

Equation (42) becomes

∆u =

∫∫

Ψ

uid2Gi. (44)

The problem of ∆u transforms to the calculation of d2Gi. Let us introduce connection coeffi-
cients Γj

ik, and expand the vector-valued 1-form dGi as

dGi = Gj ⊗ ω
j
i , (45)

where ω
j
i ≡ Γj

ikdXk. It is worth noting that the tensor product can be written as Gj ⊗ ω
j
i =

Gjω
j
i , for convenience we have omitted the tensor product ⊗ in the previous formulations, and

we will carry on the same policy.
Differentiating Eq. (45) once more, we obtain the vector-valued 2-form,

d2Gi = d(Gjω
j
i )

= dGj ∧ ω
j
i + Gjdω

j
i

= (Gkωk
j ) ∧ ω

j
i + Gjdω

j
i

= Gk(ωk
j ∧ ω

j
i ) + Gjdω

j
i

= Gj(dω
j
i + ω

j
k ∧ ωk

i ). (46)
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The expression in parentheses is a 2-form, called the curvature 2-form,

θ
j
i ≡ dω

j
i + ω

j
k ∧ ωk

i , or θij = dωij + ωik ∧ ωk
j . (47)

With this notation, Eq. (46) becomes

d2Gi = Gjθ
j
i , (48)

and Eq. (43) becomes
d2u = uid2Gi = uiGjθ

j
i = Gjθ

j
i u

i. (49)

In Eq. (46), we have

dω
j
i = d(Γj

imdXm) = dΓj
im ∧ dXm + Γj

im d(dXm)
︸ ︷︷ ︸

=0

= Γj
im,ldX l ∧ dXm, (50)

ω
j
k ∧ ωk

i = Γj
klΓ

k
imdX l ∧ dXm. (51)

Since dX l ∧ dXm = −dXm ∧ dX l, the curvature 2-form θ
j
i can be written as

θi
j =

1

2
Ri

jkldXk ∧ dX l, or θij =
1

2
RijkldXk ∧ dX l, (52)

which defines the components Rijkl of the Riemann curvature tensor as in Eq. (13). Using the
current index, it is defined as

Ri
jkl =

∂

∂Xk
Γi

jl −
∂

∂X l
Γi

jk + Γi
mkΓm

jl − Γi
mlΓ

m
jk. (53)

The displacement vector variation (42) can be expressed as

∆u =

∫∫

Ψ

d2u =

∫∫

Ψ

Gjθ
j
i u

i

=

∫∫

Ψ

uiGj

1

2
Rj

ikldXk ∧ dX l

=
1

2

∫∫

Ψ

uiRj
iklGjdXk ∧ dX l

=
1

2

∫∫

Ψ

u · GiRj
iklGjdXk ∧ dX l

=
1

2

∫∫

Ψ

u · Rj
iklG

iGjdXk ∧ dX l

=
1

2

∫∫

Ψ

u · RjiklG
iGjdXk ∧ dX l. (54)

Since dXk = Gk · dX, the above equation becomes

∆u =
1

2

∫∫

Ψ

u · RjiklG
iGjdXk ∧ dX l

=
1

2

∫∫

Ψ

u · RjiklG
iGj(Gk · dX) ∧ (Gl · dX)

=
1

2

∫∫

Ψ

u · RjiklG
iGj(Gk ∧ Gl) · (dX ∧ dX)

=
1

2

∫∫

Ψ

u · RjiklG
iGjGkGl : ε · dA. (55)
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Since Rjikl = −Rijkl, the above equation becomes

∆u = −
1

2

∫∫

Ψ

u · RijklG
iGjGkGl : ε · dA. (56)

Introducing the total expression of the Riemann tensor R = RijklG
iGjGkGl, we have a theo-

rem about the displacement vector variation as follows.
Theorem 4 Let u be the displacement vector, ∂Ψ be a closed contour/curve of a surface

Ψ. Thus, the total change or variation ∆u on going around ∂Ψ is given by

∆u = −
1

2

∫∫

Ψ

u · R : ε · dA. (57)

It is worth emphasizing again that the formulation of Eq. (57) on Route 1 does not use the
deformation gradient F , which is a pure differential geometric approach. Fortunately, the result
obtained in Eq. (57) is exactly the same as Eqs. (12) and (33) by using the deformation gradient
F on Route 1.

Finally, we answer the mentioned question in the beginning of this section. Route 1 and
Route 2 will lead to the same result.

6 Conclusions

This article revisits the compatibility conditions of the deformation field in continuum me-
chanics. The explicit total tensor expression between the displacement vector variation ∆u

and the Riemannian curvature tensors R is obtained (see Fig. 4). The study shows that ∆u is
linearly proportional to the Riemannian curvature tensor R and displacement vector u.

Fig. 4 ∆u linearly proportional to R

The explicit expression reconfirms that the compatibility condition is equivalent to the van-
ishing of the Riemann tensor. The Burgers vector has been given as db = − 1

2u ·R : ε ·dA, and
the dislocation density tensor has been expressed as T = − 1

2u ·R : ε. Finally, the mathemati-
cal formula of a change on a vector which is parallel displaced around a closed curve has been
reformulated and verified in a most abstract approach in exterior differential forms.
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Appendix A

Notation and preliminaries on finite deformation field

To distinguish between the undeformed and deformed states, the quantities with the undeformed
body (state) B will be denoted by the upper case (majuscules), and those associated with the deformed
body (state) b by the lower case (minuscules). When these quantities are referred to Lagrange coordi-
nates XK , their indices will be the upper case (majuscules), and when they are referred to Euler xk,
their indices will be the lower case (minuscules). For example, a displacement vector u referred to XK

will have components uK , and referred to xk will have the components uk. If we denote GK and gk
as the covariant base vector in the undeformed body and the deformed body, respectively, then we can
write the displacement vector in a total form, u = uKGK = ukgK .

In the undeformed state, let X = X(XA) be the position vector of a particle and XA be Lagrange
coordinates of the particle, then, its differential is dX = ∂X

∂XA dXA = X∇XAdXA = X∇AdXA =
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GAdXA, where ∇A = GA ∂

∂XA and GA are the covariant derivative and tangent vector in the under-
formed state, respectively. After the time t, the position moves to the deformed state, its position is
x = x(X , t), and its differential is dx = ∂x

∂xi dxi = x∇xidxi = x∇idx
i = gidx

i, where ∇i = gi ∂

∂xi

and gi are the gradient operator and tangent vector in the deformed state, respectively.
Let dX be the line element between two particles XA and XA + dXA, after the deformation, the

line element becomes dx between the corresponding particles dxi and xi + dxi, then dx = x(X +

dX , t) − x(X , t) = ∂x
∂X

· dX = x∇A · dX = ∂x

∂XA
∂XA

∂X
· dX = ∂x

∂XA GA · dX = ∂x

∂xi
∂xi

∂XA GA · dX =

gi
∂xi

∂XA GA · dX = F · dX = dX · F T, where the deformation gradient tensor F = ∂x
∂X

= x∇A =
∂x

∂XA GA = giF
i
AGA = F iAgiG

A, its components F iA = ∂xi

∂XA = xi;A = ∇Ax
i, F T = ∂x

∂XA GA = F iAGAgi,

and F −1 = ∂X

∂xi gi = FAi GAgi.
Let u be the displacement vector, then, x = u+X , the deformation gradient tensor F = I+u∇X =

I + giG
A∇Au

i, the transpose F T = I + ∇u = I + GAgi∇Au
i and the inverse F −1 = I − u∇x =

I − gjgi∇iu
j .

The materials time derivative of dx leads to dẋ = Ḟ · dX = lF dx, in which the velocity gradient
tensor is defined as l = u̇∇x = ∂u̇

∂x
= u̇i;jgig

j = ∇ju
igig

j = Ḟ F −1, which can be decomposed as the
sum of d and w, l = d + w, where the rate of deformation tensor d = 1

2
(l + lT) and the spin tensor

w = 1
2
(l − lT).

If we denote dA as the area element in the undeformed state, then the area in the deformed one
da = JF −T · dA and dA = J−1F T · da, where the Jacobean J = det(F ).

The metric tensor in the undeformed body GAB = GAGB and in the deformed body gij = gigj .
The tangent vectors between the undeformed and deformed state can be easily transferred as

gi = δiAGA, gi = δiAGA, GA = δAig
i, GA = δAigi, where the shifters δiA = gi · GA = δAi, δ

iA =
gi · GA = δAi.

Appendix B

Curl of infinitesimal rotation tensor

The displacement gradient u∇X can be expressed as the sum of a symmetric tensor and an an-
tisymmetric tensor u∇ = ǫ + Ω, where the symmetric part ǫ = 1

2
(u∇ + (u∇)T) is the infinitesimal

strain tensor, and the antisymmetric part Ω = 1
2
(u∇ − (u∇)T), which is known as the infinitesimal

rotation tensor with the property ΩT = −Ω. Thus, there are three independent components of Ω,

Ω =

0

@

0 −Ω12 −Ω13

Ω12 0 −Ω23

Ω13 Ω23 0

1

A . (B1)

Here, there is no restriction that is placed on the magnitude of u∇. Generally speaking, ǫ and Ω

do not have the meaning of the infinitesimal strain and the infinitesimal rotation tensors, unless the
deformation u is infinitesimal.

Since Ω only has three independent components, the three components can be used to define the
components of a vector ω,

Ω = −ε · ωω = −
1

2
ε : Ω =

1

2
u × ∇X =

1

2
u∇X : ε. (B2)

Thus,

ε · (ω × ∇X ) = −ε · (ω∇X ) : ε = (R(GA,GB)u) : ε =
1

2
u · R : ε, (B3)

then,

ε · (ω∇X ) = −
1

2
R(GA,GB)u = −

1

2
u · R, (B4)

or

ω∇X = −
1

4
ε : (R(GA,GB)u) = −

1

4
ε : (u · R). (B5)

This means that the rotation gradient ω∇X will generate the curvature R and vice versa.

Appendix C

Formulations in deformed state b
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C1 Displacement vector variation In the deformed state b, there is a surface ψ with a closed
boundary ∂ψ, and the displacement vector variation along the closed loop ∂ψ can be written as

∆u =

I

∂ψ

du =

I

∂ψ

∂u

∂x
· dx =

I

∂ψ

(1 − F
−1) · dx

=

I

∂ψ

(u∇x) · dx = −

ZZ

ψ

(u∇x) × ∇x · da

= −

ZZ

ψ

(u∇ig
i) ×∇jg

j
· da

= −

ZZ

ψ

(u∇i∇j)g
i
× g

j
· da

= −
1

2

ZZ

ψ

(u∇i∇j − u∇j∇i)g
i
g
j : ε · da

= −
1

2

ZZ

ψ

ur(gi, gj) : ε · da, (C1)

where the permutation tensor ε = εijkg
igjgk and

ur(gi, gj) = (u∇i∇j − u∇j∇i)g
i
g
j

= g
k(uk∇i∇j − uk∇j∇i)g

i
g
j

= g
kulr

l
.kijg

i
g
j = u · glg

krl.kijg
i
g
j

= u · rl.kijglg
k
g
i
g
j

= u · r, (C2)

where the Riemann-Christoffel curvature tensor r = rl.kijglg
kgigj , which is defined in the deformed

state with its components rl.kij := ∂iγ
l
jk − ∂jγ

l
ik + γlimγ

m
jk − γljmγ

m
ik . The symbols γljk are called the

coefficients of the affine connections, or the Christoffel symbols, with respect to the frame gj , that is,
∇gj gk = glγ

l
jk.

Thus, the displacement vector variation in Eq. (C1) will be

∆u = −
1

2

ZZ

Ψ

u · r : ε · da. (C3)

Therefore, the curl of the displacement gradient in the deformed state is

(u∇x) × ∇x =
1

2
u · r : ε, (C4)

or

(u∇x)∇x =
1

2
u · r. (C5)

The displacement density flux tensor t in the deformed state is

t =
d∆u

da
= −

1

2
u · r : ε. (C6)

It is clear to see that the compatibility condition in the deformed state b is ∆u = 0, which is equivalent
to the vanishing of the Riemann curvature tensor, r = rl.kijglg

kgigj = 0, in the component form,

rl.kij = 0.
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C2 Rate of deformation gradient tensor Making a material derivative of Eq. (C1) with respect to
the time,

∆u̇ =

I

∂ψ

du̇ =

I

∂ψ

∂u̇

∂x
· dx =

I

∂ψ

(∇iu̇)gi · dx =

I

∂ψ

l · dx

=

I

∂ψ

(d + w) · dx = −

ZZ

ψ

(d + w) × ∇x · da = −

ZZ

ψ

w × ∇x · da

= −

ZZ

ψ

(∇i∇ju̇)gi × g
j
· dx = −

1

2

ZZ

ψ

(∇i∇ju̇ −∇j∇iu̇)gi × g
j
· dx

= −
1

2

ZZ

ψ

g
k(∇i∇j u̇k −∇j∇iu̇k)g

i
g
j : ε · da

= −
1

2

ZZ

ψ

u̇ · r : ε · da, (C7)

then, the curl of the rate of deformation tensor is

l × ∇x = w × ∇x =
1

2
u̇ · r : ε. (C8)

From w × ∇x = w∇x : ε, thus,

l∇x = w∇x =
1

2
u̇ · r. (C9)

C3 In exterior differential forms Regarding the exterior differential forms, we have the displacement
vector variation,

∆u =

I

∂ψ

du =

ZZ

Ψ

d(du) =

ZZ

Ψ

d(∇yu · dy), (C10)

in which
∇yu · dy = (I − F

−1) · dy (C11)

is a vector-valued 1-form, and differentiating the above equation once more, we obtain the vector-valued
2-form,

dF
−1 = d(∇yu · dy)

= d(∇yu) ∧ dy + (−1)0∇yud2
y

= ∇y(∇xu) · dx ∧ dy

= ∇y∇xu · dx ∧ dy, (C12)

where Ref. [48] is used for d2y = 0.
Due to the antisymmetric nature of exterior algebra, dx ∧ dy = −dy ∧ dx,

d(∇yu · dy) = −
1

2
(∇x∇yu − ∇y∇xu) · dx ∧ dy. (C13)

According to the definition of the Riemann tensor,

r(x,y)u = ∇x∇yu − ∇y∇xu − ∇[x,y ]u, (C14)

and in the coordinate frame ∇[x,y ]u = 0, we have

∇x∇yu − ∇y∇xu = r(x,y)u. (C15)

If we expand the vector fields in terms of the coordinate basis ∂i, the Riemann tensor r(x,y)u =
(rijklx

kyluj)∂i and its components rijkl := ∂kγ
i
lj−∂lγ

i
kj +γIkmγ

m
lj −γ

I
LMγ

m
kj . The symbols γijk are called

the coefficients of the affine connections, or the Christoffel symbols, with respect to the frame gj , that
is, ∇gj gk = giγ

i
jk.

Therefore, we have

d(∇yu · dy) = −
1

2
(∇x∇yu − ∇y∇xu) · dx ∧ dy

= −
1

2
r(x,y)u · dx ∧ dy. (C16)
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Finally, we have the displacement change in a differential form,

∆u =

I

∂ψ

du =

ZZ

Ψ

d(du) =

ZZ

Ψ

d(∇yu · dy)

= −
1

2

ZZ

Ψ

(∇x∇yu − ∇y∇xu) · dx ∧ dy

= −
1

2

ZZ

Ψ

r(x,y)u · dx ∧ dy. (C17)

Note that da = dx∧dy, hence, the displacement density flux t and the incompatibility operator inc(F )

t =
d∆u

da
= −

1

2
r(x,y)u, (C18)

from dF −1 ∧ dy = −(1/2)ru · dx ∧ dy, then,

dF
−1 = −

1

2
r(x,y)u · dx. (C19)

Making a materials time derivative for the above equation, we have the rate of deformation gradient,

dl = −
1

2
r(x,y)u̇ · dx. (C20)

Using the language of differential forms, the compatibility conditions in the deformed state b can be
stated as follows:

(i) Compatibility conditions of simply-connected bodies
For simply-connected bodies, the displacement change integral along the closed loop must be zero,

inc(F ) = 0, therefore, the Riemann tensor r(x,y) must vanish because of the arbitrary nature of the
displacement u.

(ii) Compatibility conditions of non-simply-connected bodies
For non-simply-connected bodies, the vanishing of Riemann tensor is not enough and needs extra

conditions. According to the de Rham theorem[47,51–52], these extra conditions are
H

∂ψi
du =

H

∂ψi
(1 −

F −1) · dx = 0, where ∂ψi are the closed loops, including the holes and/or defects.


